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1 Data Format and System Description 

3D video is represented using the Multiview Video plus Depth (MVD) format, in which a small 

number of captured views as well as associated depth maps are coded and the resulting bitstream 

packets are multiplexed into a 3D video bitstream. After decoding the video and depth data, 

additional intermediate views suitable for displaying the 3D content on an auto-stereoscopic 

display can be synthesized using depth-image-based rendering (DIBR) techniques. For the 

purpose of view synthesis, camera parameters are additionally included in the bitstream. The 

bitstream packets include header information, which signal, in connection with transmitted 

parameter sets, a view identifier and an indication whether the packet contains video or depth 

data. Sub-bitstreams containing only some of the coded components can be extracted by 

discarding bitstream packets that contain non-required data. One of the views, which is also 

referred to as the base view or the independent view, is coded independently of the other views 

and the depth data using a conventional HEVC video coder. The sub-bitstream containing the 

independent view can be decoded by an unmodified HEVC video decoder and displayed on a 

conventional 2D display. Optionally, the encoder can be configured in a way that a sub-bitstream 

representing two views without depth data can be extracted and independently decoded for 

displaying the 3D video on a conventional stereo display. The codec can also be used for coding 

multiview video signals without depth data. In that case alternative methods such as Image 

Domain Warping (IDW) may be used to generate a multiview signal. And, when using depth 

data, it can be configured in a way that the video pictures can be decoded independently of the 

depth data. 

 

 
Figure 1: Overview of the system structure and the data format for the transmission of 3D video. 

 

The basic concept of the system and data format is illustrated in Figure 1. In general the input 

signal for the encoder consists of multiple views, associated depth maps, and corresponding 

camera parameters. However, as described above, the codec can also be operated without depth 

data. The input component signals are coded using a 3D video encoder, which represents an 

extension of HEVC. At this, the base view is coded using an unmodified HEVC encoder. The 3D 

video encoder generates a bitstream, which represents the input videos and depth data in a coded 

format. If the bitstream is decoded using a 3D video decoder, the input videos, the associated 



depth data, and camera parameters are reconstructed with the given fidelity. For displaying the 

3D video on an autostereoscopic display, additional intermediate views are generated by a DIBR 

algorithm using the reconstructed views and depth data. If the 3D video decoder is connected to 

a conventional stereo display instead of to an autostereoscopic display, the view synthesizer can 

also generate a pair of stereo views, in case such a pair is not actually present in the bitstream. At 

this, it is possible to adjust the rendered stereo views to the stereo geometry of the viewing 

conditions. One of the decoded views or an intermediate view at an arbitrary virtual camera 

position can also be used for displaying a single view on a conventional 2D display. 

The 3D video bitstream is constructed in a way that the sub-bitstream representing the coded 

representation of the base view can be extracted by simple means. The bitstream packets 

representing the base view can be identified by inspecting transmitted parameter sets and the 

packet headers. The sub-bitstream for the base view can be extracted by discarding all packets 

that contain depth data or data for the dependent views and, then, the extracted sub-bitstream can 

be directly decoded with an unmodified HEVC decoder and displayed on a conventional 2D 

video display. 

The encoder can also be configured in a way that the sub-bitstream containing only two stereo 

views can be extracted and directly decoded using a stereo decoder. The encoder can also be 

configured in a way that the views can be generally decoded independently of the depth data. It 

is also possible to synthesize intermediate view using only the stereo sequences as input of the 

view synthesis. 

A detailed description of the coding scheme is given in sec. 2. Depth-image-based rendering 

algorithms are described in sec. 3. 

2 Coding Algorithm 

In the following, the coding algorithm based on the MVD format, in which each video picture is 

associated with a depth map, is described. The coding algorithm can also be used for a multiview 

format without depth maps. The video pictures and, when present, the depth maps are coded 

access unit by access unit, as it is illustrated in Figure 2. An access unit includes all video 

pictures and depth maps that correspond to the same time instant. Non-VCL NAL units 

containing camera parameters may be additionally associated with an access unit. It should be 

noted that the coding order of access units doesn't need to be identical to the capture or display 

order. In general, the reconstructed data of already coded access units can be used for an efficient 

coding of the current access unit. Random access is enabled by so-called random access units or 

instantaneous decoding refresh (IDR) access units, in which the video pictures and depth maps 

are coded without referring to previously coded access units. Furthermore, an access unit doesn't 

reference any access unit that precedes the previous random access unit in coding order. 

 



 

Figure 2: Access unit structure and coding order of view components. 

 

The video pictures and depth maps corresponding to a particular camera position are indicated 

by a view identifier (viewId). All video pictures and depth maps that belong to the same camera 

position are associated with the same value of viewId. The view identifiers are used for 

specifying the coding order inside the access units and detecting missing views in error-prone 

environments. Inside an access unit, the video picture and, when present, the associated depth 

map with viewId equal to 0 are coded first, followed by the video picture and depth map with 

viewId equal to 1, etc. A video picture and depth map with a particular value of viewId are 

transmitted after all video pictures and depth maps with smaller values of viewId. For the 

independent view, the video picture is always coded before the associated depth map. For 

dependent views, the video picture may be coded before or after the associated depth map (i.e., 

the depth map with the same value of viewId). It should be noted that the value of viewId doesn't 

necessarily represent the arrangement of the cameras in the camera array. For ordering the 

reconstructed video pictures and depth map after decoding, each value of viewId is associated 

with another identifier called view order index (VOI). The view order index is a signed integer 

values, which specifies the ordering of the coded views from left to right. If a view A has a 

smaller value of VOI than a view B, the camera for view A is located left to the camera of 

view B. In addition, camera parameters required for converting depth values into disparity 

vectors are included in the bitstream. For the considered linear setup, the corresponding 

conversion parameters consist of a scale factor and an offset. The vertical component of a 

disparity vector is always equal to 0. The horizontal component is derived according to 

dv = ( s * v + o ) >> n, 

where v is the depth sample value, s is the transmitted scale factor, o is the transmitted offset, 

and n is a shift parameter that depends on the required accuracy of the disparity vectors. 

Each video sequence and depth sequence is associated with a separate sequence parameter set 

and a separate picture parameter set. The picture parameter set syntax, the NAL unit header 

syntax, and the slice header syntax for the coded slices haven't been modified for including a 



mechanism by which the content of a coded slice NAL units can be associated with a component 

signal. Instead, the sequence parameter set syntax for all component sequences except for the 

base view has been extended. Theses sequences parameter sets contain the following additional 

parameters: 

 the view identifier (indicates the coding order of a view);  

 the depth flag (indicates whether video data or depth data are present); 

 the view order index (indicates the location of the view relative to other coded views); 

 an indicator specifying whether camera parameters are present in the sequence parameter 

set or in the slice headers; 

 when camera parameters are present in an sequence parameter set, for each viewId value 

smaller than the current view identifier, a scale and an offset specifying the conversion of 

a depth sample of the current view to a horizontal disparity between the current view and 

the view with viewId; 

 when camera parameters are present in an sequence parameter set, for each viewId value 

smaller than the current view identifier, a scale and an offset specifying the conversion of 

a depth sample of the view with viewId to a horizontal disparity between the current view 

and the view with viewId; 

The sequence parameter set for the base view doesn't contain the additional parameters. Here, the 

view identifier is inferred to be equal to 0, the depth flag is inferred to be equal to 0, and the view 

order index is inferred to be equal to 0. 

The sequence parameter sets for dependent views include a flag, which specifies whether the 

camera parameters are constant for a coded video sequence or whether they can change on a 

picture by picture basis. If this flag indicates that the camera parameters are constant for a coded 

video sequence, the camera parameters (i.e., the scale and offset values described above) are 

present in the sequence parameter set. Otherwise, the camera parameters are not present in the 

sequence parameter set, but instead the camera parameters are coded in the slice headers that 

reference the corresponding sequence parameter set. 

 



 
Figure 3: Basic codec structure with inter-component prediction (red arrows). 

 

The basic structure of the 3D video codec is shown in the block diagram of Figure 3. In 

principle, each component signal is coded using an HEVC-based codec. The resulting bitstream 

packets, or more accurately, the resulting Network Abstraction Layer (NAL) units, are 

multiplexed to form the 3D video bitstream. The base or independent view is coded using an 

unmodified HEVC codec. Given the 3D video bitstream, the NAL units containing data for the 

base layer can be identified by parsing the parameter sets and NAL unit header of coded slice 

NAL units (up to the picture parameter set identifier). Based on these data, the sub-bitstream for 

the base view can be extracted and directly coded using a conventional HEVC decoder. 

For coding the dependent views and the depth data, modified HEVC codecs are used, which are 

extended by including additional coding tools and inter-component prediction techniques that 

employ already coded data inside the same access unit as indicated by the red arrows in Figure 3. 

For enabling an optional discarding of depth data from the bitstream, e.g., for supporting the 

decoding of a stereo video suitable for conventional stereo displays, the inter-component 

prediction can be configured in a way that video pictures can be decoded independently of the 

depth data. A detailed description of the added coding tools is given in the following subsections. 

2.1 Coding of the Independent View 

The independent view, which is also referred to as the base view, is coded using an unmodified 

HEVC codec. 

2.2 Coding of Dependent Views 

For the dependent views, the same concepts and coding tools are used as for the independent 

view. However, additional tools have been integrated into the HEVC codec, which employ 

already coded data in other views for efficiently representing a dependent view. The additionally 

integrated tools are described in the following. 



2.2.1 Disparity-compensated prediction 

As a first coding tool for the dependent views, the well-known concept of disparity-compensated 

prediction (DCP), which is also used in MVC, has been added as an alternative to motion-

compensated prediction (MCP). At this, MCP refers to an inter-picture prediction that uses 

already coded pictures of the same view, while DCP refers to an inter-picture prediction that uses 

already coded pictures of other views in the same access unit, as it is illustrated in Figure 4. 

 

 
Figure 4: Disparity-compensated prediction as an alternative to motion-compensated prediction. 

 

The macroblock syntax and decoding process haven't been changed for adding DCP, only the 

high-level syntax has been modified so that already coded video pictures of the same access unit 

can be inserted into the reference pictures lists. As illustrated in Figure 4, the transmitted 

reference picture index (R in the figure) signals whether an inter-coded blocks is predicted by 

MCP or DCP. The motion vector prediction is modified in a way that the motion vectors of 

motion-compensated blocks are predicted by only using the neighboring blocks that also use 

temporal reference pictures, while the disparity vectors of disparity-compensated blocks are 

predicted by only using the neighboring blocks that also use inter-view reference pictures. 

2.2.2 View synthesis based inter-view prediction 

The encoder and the decoder use the same inter-prediction view synthesis algorithm. The 

included view synthesis algorithm may be similar to the one investigated in the VSRS software. 

Basing on all already coded views, a new virtual view is synthesized in the position of the 

current view. Some regions of newly synthesized image are not available because they were 

occluded in previously coded views. Those disoccluded regions are identified and marked on a 

binary map, named availability map, which controls coding and decoding process. Coder and 

decoder simultaneously use this map to determine, whether given CU is coded or not. Because in 

a typical case most of the scene is the same in all of views, only small parts are disoccluded in 

subsequently coded views, and thus only small amount of CUs can be coded.  



 
                       a)                                                b)                                                   c) 
Figure 5: a) The original side view, b) Disocclusion in the side view, and c) CUs selected by the rd-opt for 

coding in the side view. 

2.2.2.1 Post processing in-loop filtering (integration tool) 

A final step of view-synthesis prediction is reduction of artifacts in synthesized view. This post-

processing consists of Depth-Gradient-based Loopback Filterer (DGLF) and Availability 

Deblocking Loopback Filter (ADLF). 

The first one (DGLF), reduces texture artifacts introduced by DIBR technique in the areas  

of a sudden depth changes. In order to cope that the synthesized image is adaptively filtered with 

respect to depth gradient strengths. Large depth edges impose strong low-pass filtering of the 

synthesized texture, while flat depth regions are not filtered at all. 

The latter (ADLF), reduces artifacts that are generated as a result of block CU-based coding. 

Shape of coded region not necessarily matches shape of binary availability map. This 

discrepancy is a source of artificial edges between those regions (Figure 5b) and c)) . The ADLF 

provides smooth transition between coded and synthesized regions by interpolating between 

them. 

2.2.3 Inter-view motion prediction 

The basic concept of the inter-view prediction of motion parameters is illustrated in Figure 6. For 

the following overview, it is assumed that an estimate of a pixel-wise depth map for the current 

picture is given. Below, it is described how such an estimate can be derived. For deriving 

candidate motion parameters for a current block in a dependent view, a sample location x in the 

middle of the block is selected and the associated depth value d is converted to a disparity vector. 

By adding the disparity vector to the sample location x a reference sample location xR is 

obtained. The prediction block in the already coded picture in the reference view that covers the 

sample location xR is used as the reference block. If this reference block is coded using MCP, the 

associated motion parameters can be used as candidate motion parameters for the current block 

in the current view. The derived disparity vector can also be directly used as a candidate 

disparity vector for DCP. 

 



 

Figure 6: Basic principle of deriving motion parameters for a block in a current picture based on motion 

parameters in an already coded reference view and an estimate of the depth map for the current picture. 

 

2.2.3.1 Derivation of Depth Map Estimates 

The concept of inter-view motion prediction requires a depth map estimate for the current 

picture. Even if depth maps are coded, the depth map associated with a picture can be coded after 

the picture in order to enable coding techniques that employ the coded pictures for an efficient 

representation of the depth maps. In the following, two methods by which a suitable estimate for 

the depth map of the current picture can be derived based on already transmitted information are 

described. Both methods have been integrated in the codec, and one of the methods can be 

chosen by configuring the encoder accordingly. The used method is signaled in the sequence 

parameter sets for dependent views. This first method requires the transmission of depth data as 

part of the bitstream, and by using this method a decoder must decode the depth maps of 

previously coded views for decoding dependent views. The second method is also applicable if 

depth maps are not coded inside the bitstream, and if depth maps are coded, the decoding of the 

video pictures is independent of the depth maps. 

Method 1: Depth map estimate based on already coded depth map 

Since the depth map for a reference view is coded before the current picture, the reconstructed 

depth map is mapped into the coordinate system of the current picture for obtaining a suitable 

depth map estimate for the current picture. In Figure 7, such a mapping is illustrated for a simple 

depth map, which consists of a square foreground object and background with constant depth. 

For each sample of the given depth map, the depth sample value is converted into a sample-

accurate disparity vector. Then, each sample of the depth map is displaced by the disparity 

vector. If two or more samples are displaced to the same sample location, the sample value that 



represents the minimal distance from the camera (i.e., the sample with the larger value) is 

chosen. In general, the described mapping leads to sample locations in the target view to which 

no depth sample value is assigned (black area in the middle picture of Figure 7). These areas 

represent parts of the background that are uncovered due to the movement of the camera and can 

be filled using surrounding background sample values. Therefore, a hole filling algorithm, which 

processes the converted depth map line by line, is used. Each line segment that consists of 

successive sample location to which no value has been assigned is filled with the depth value of 

the two neighboring samples that represents a larger distance to the camera (i.e., the smaller 

depth value). 

 

 

Figure 7: Mapping of a depth map into another view: (left) original depth map; (middle) converted depth 

map after displacing the orginal samples; (right) final converted depth map after filling of holes. 

 

Method 2: Depth map estimate based on coded disparity and motion vectors 

The above described method 1 is only applicable if depth maps are included in the bitstream, and 

by using this method, the video pictures (except the base view) cannot be decoded independently 

of the depth maps. In the following, a method for deriving depth map estimates that only uses 

data that are available in the coded representations of the video pictures is described. When using 

this method, one depth sample is derived for a 4x4 block of luma samples. Consequently, the 

estimated depth maps have 1/4-th of the horizontal and vertical resolution of the luma 

components.  

In random access units, all blocks of the base view picture, are intra-coded. In the pictures of 

dependent views, most blocks are typically coded using DCP and the remaining blocks are intra-

coded. When coding the first dependent view in a random access unit, no depth or disparity 

information is available. Hence, candidate disparity vectors are derived using a local 

neighborhood, i.e., by conventional motion vector prediction. But after coding the first 

dependent view in a random access unit, the transmitted disparity vectors are used for deriving a 

depth map estimate, as it is illustrated in Figure 8. Therefore, the disparity vectors used for DCP 

are converted into depth values and all depth samples that correspond to a disparity-compensated 

block are set equal to the derived depth value. The depth samples of intra-coded blocks are 

derived based on the depth samples of neighboring blocks; the used algorithm is similar to 

spatial intra prediction. If more than two views are coded, the obtained depth map is mapped into 

other views using the method described above and used as depth map estimate for deriving 

candidate disparity vectors. During this mapping, the calculation of the disparity vectors takes 

into account that the estimated depth maps have 1/4-th of the horizontal and vertical resolution of 

the luma components. 

 



 

Figure 8: Generation of an initial depth map estimate after coding the first dependent view of a random 

access unit. 

 

The depth map estimate for the picture of the first dependent view in a random access unit is 

used for deriving a depth map for the next picture of the first dependent view. The basic 

principle of the algorithm is illustrated in Figure 9. After coding the picture of the first dependent 

view in a random access unit, the derived depth map is mapped into the base view and stored 

together with the reconstructed picture. The next picture of the base view is typically inter-

coded. For each block that is coded using MCP, the associated motion parameters are applied to 

the depth map estimate. A corresponding block of depth map samples is obtained by MCP with 

the same motion parameters as for the associated texture block; instead of a reconstructed video 

picture the associated depth map estimate is used as reference picture. The block of depth 

samples that is associated with a block of luma samples has 1/4-th of the horizontal and vertical 

resolution of the luma block. In order to simplify the motion compensation and avoid the 

generation of new depth map values, the MCP for depth block doesn't involve any interpolation. 

The motion vectors are rounded to depth-sample-precision (1/4-th of the luma sample precision) 

before they are used. The depth map samples of intra-coded blocks are again determined on the 

basis of neighboring depth map samples. Finally, the depth map estimate for the first dependent 

view, which is used for the inter-view prediction of motion parameters, is derived by mapping 

the obtained depth map estimate for the base view into the first dependent view. 

 



 

Figure 9: Derivation of a depth map estimate for the current picture using motion parameters of an already 

coded view of the same access unit. 

 

After coding the second picture of the first dependent view, the estimate of the depth map is 

updated based on actually coded motion and disparity parameters, as it is illustrated in Figure 10. 

For blocks that are coded using DCP, the depth map samples are obtained by converting the 

disparity vector into a depth value. The depth map samples for blocks that are coded using MCP 

are obtained by MCP of the previously estimated depth maps, similar as for the base view. 

In an optional configuration, new depth values are determined by adding a depth correction. The 

depth correction is derived by converting the difference between the motion vectors for the 

current block and the corresponding reference block of the base view into a depth difference. 

The depth values for intra-coded blocks are again determined by a spatial prediction. The 

updated depth map is mapped into the base view and stored together with the reconstructed 

picture. It is also used for deriving a depth map estimate for other views in the same access unit. 

 



 

Figure 10: Update of depth map estimate for a dependent view based on coded motion and disparity vectors. 

 

For all following pictures, the described process is repeated. After coding the base view picture, 

a depth map estimate for the base view picture is determined by MCP using the transmitted 

motion parameters. This estimate is mapped into the second view and used for the inter-view 

prediction of motion parameters. After coding the picture of the second view, the depth map 

estimate is updated using the actually used coding parameters. At the next random access unit, 

the inter-view motion parameter prediction is not used, and after decoding the first dependent 

view of the random access unit, the depth map is re-initialized as described above. 

2.2.3.2 Usage of Inter-View Motion Parameter Prediction 

In HEVC, two different modes for signaling the motion parameters for a block are specified. In 

the first mode, which is referred to as adaptive motion vector prediction (AMVP) mode, the 

number of motion hypotheses, the reference indices, the motion vector differences, and 

indications specifying the used motion vector predictors are coded in the bitstream. The second 

mode is referred to as merge mode. For this mode, only an indication is coded, which signals the 

set of motion parameters that are used for the block. The inter-view motion parameter prediction 

has been added to both modes, as will be described in the following. 

Inter-view motion vector prediction in the AMVP mode 

In the adaptive motion vector prediction (AMVP) mode, the number of motion hypotheses, the 

reference indices specifying the used reference pictures, the motion vector differences, and 

indexes specifying the used motion vector predictor are transmitted in the bitstream. For each 

motion hypothesis, a candidate list of motion vector predictors is derived based on the coded 

reference index. This list includes motion vectors of neighboring blocks that are associated with 

the same reference index as well as a motion vector predictor which is derived based on the 

motion parameters of the co-located block in a temporal reference picture. For including the 

inter-view motion parameter prediction, the AMVP mode has been extended in a way that an 

inter-view motion vector predictor is added to the candidate list. In our implementation it is 

inserted at the third position of the list. Based on the depth estimate for a middle sample of the 

current block, a disparity vector and a reference block in a reference view is determined as 

described above. If the reference index for the current block refers to an inter-view reference 



picture, the inter-view motion vector predictor is set equal to the corresponding disparity vector. 

If the current reference index refers to a temporal reference picture and the reference block uses a 

motion hypothesis that refers to the same access unit as the current reference index, the motion 

vector that is associated with this motion hypothesis is used as inter-view motion vector 

predictor. In all other cases, the inter-view motion vector predictor is marked as invalid and is 

not included in the list of motion vector predictor candidates. 

Inter-view motion vector prediction in the merge mode (and skip mode) 

In the merge mode of HEVC (as well as in the skip mode, which represents the merge mode 

without coding a residual signal), basically the same motion parameters (number of hypotheses, 

reference pictures, and motion vectors) as for a neighboring block are used. If a block is coded in 

the merge mode, a candidate list of motion parameters is derived, which includes the motion 

parameters of spatially neighboring blocks as well as motion parameters that are calculated based 

on the motion parameters of the co-located block in a temporal reference picture. The chosen 

motion parameters are signaled by transmitting an index into the candidate list. Similarly as for 

the AMVP mode, the candidate list of motion parameters is extended by a motion parameter set 

that is obtained using inter-view motion prediction, as described in the following. For each 

potential motion hypothesis, the first two reference indices of the reference picture list are 

investigated in the given order. A motion vector candidate for the reference index 0 is derived in 

the same way as for the AMVP mode. If the derived motion vector is valid, the reference index 0 

and the derived motion vector are used for the considered hypothesis. Otherwise, the reference 

index 1 is tested in the same way. If it also results in an invalid motion vector, the motion 

hypothesis is marked as not available. In order to prefer temporal prediction, the order in which 

is reference indices are tested is reversed if the first index refers to an inter-view reference 

picture. The number of motion hypotheses for the inter-view motion parameter set is given by 

the number of available motion hypotheses. If all potential motion hypotheses are marked as not 

available, the inter-view candidate cannot be selected. 

2.2.3.3 Derivation of co-located motion vector candidate 

The availability of co-located vector is specified in Table 1. The co-located motion vector is 

available for motion vector prediction when the coded motion vector has the same characteristics 

as the co-located motion vector. The co-located motion vector is not-available for motion vector 

prediction when the coded motion vector has different characteristics than the co-located motion 

vector. 

 
Table 1 : The availability of the co-located motion vector 

Availability of co-located 

vector 

Coding vector Co-located vector 

Available Motion vector Motion vector 

Non-available Motion vector Inter-view vector 

Not-available Inter-view vector Motion vector 

Available Inter-view vector Inter-view vector 

 

Inter-view prediction is restricted to reference pictures that have the same POC as the current 

picture. POC is used to specify the availability of the co-located motion vector. The co-located 

motion vector is available when one of the following two cases is true. In case 1, both the coded 

motion vector and co-located motion vector are motion vectors referring to reference pictures 

inside the current view (temporal motion vectors). In case 2, both the coded motion vector and 



the co-located motion vector are motion vectors that refer to inter-view reference pictures 

(disparity vectors). 

 

1. (CurrPOC != CurrRefPOC) && (ColPOC != ColRefPOC) 

2. (CurrPOC == CurrRefPOC) && (ColPOC == ColRefPOC) 

 

The variables in the above conditions are specified as follows: 

 

CurrPOC : POC of the current picture 

ColPOC : POC of the co-located picture 

CurrRefPOC : POC of the picture that is referenced by the current picture 

ColRefPOC : POC of the picture that is referenced by the co-located picture 

 

In case 1, the co-located motion vector is scaled using the difference of POCs as specified in 

HEVC. In case 2, the co-located motion vector is scaled using the difference of ViewOrderIdx 

instead of the POC difference. The variable ViewOrderIdx that is associated with each view 

specifies the order of the view from left to right. The scaling factor is calculated using the 

following equations: 

 

DistScaleFactor = Clip3( -1024, 1023, ( tb * tx + 32 ) >> 6 ) 

 

tx = ( 16384 + Abs( td / 2 ) ) / td 

 

where td and tb are derived as 

 

td = Clip3( -128, 127, ColViewOrderIdx – ColRefViewOrderIdx ) 

 

tb = Clip3( -128, 127, CurrViewOrderIdx – CurrRefViewOrderIdx ) 

 
The variables in the above equations are specified as follows: 

 

CurrViewOrderIdx : ViewOrderIdx of current picture 

ColViewOrderIdx : ViewOrderIdx of co-located picture 

CurrRefViewOrderIdx : ViewOrderIdx of the picture that is referenced by the current picture 

ColRefViewOrderIdx : ViewOrderIdx of the picture that is referenced by the co-located picture 

 

2.2.4 Depth-based motion parameter prediction 

Depth-Based Motion Prediction (DBMP) is a new coding tool for multiview video coding which 

originates from the idea that motion fields of neighboring views in multiview sequence are 

highly correlated. DBMP provides an efficient representation of motion data in multiview video 

bitstreams that carry also depth/disparity maps. The motion information, such as motion vectors 

and reference indices, for each pixel of encoded coding unit (CU)  

is directly inferred with use of already coded disparity maps from encoded CUs in the 

neighboring views at the same temporal instance (Figure 11). This procedure is repeated 

independently for every pixel of encoded CU. Consequently, motion vectors and reference 

indices for CU are not transmitted in the bitstream but are obtained from the reference view at 

the receiving side.  



 

Figure 11: Independent derivation of motion information for each point of encoded CU from corresponding 

point in reference view. 

2.2.5 Inter-view residual prediction 

The basic principle of the inter-view residual prediction is illustrated in Figure 12. Similarly as 

for the inter-view motion prediction, the inter-view residual prediction is based on a depth map 

estimate for the current picture. The same depth map estimate as for the inter-view motion 

prediction is used. Depending on the encoder configuration, the depth map estimate is derived by 

one of the two methods described in sec. 2.2.3.1. Based on the depth map estimate, a disparity 

vector is determined for a current block and the residual block in the reference view that is 

referenced by the disparity vector is used for predicting the residual of the current block. 

 

 

Figure 12: Basic concept for the inter-view residual prediction. 

 

A more detailed illustration of the concept for deriving a reference block location inside the 

reference view is given in Figure 13. Inside the current block, a sample location x in the middle 

of the block is selected and the associated depth value d is converted to a disparity vector. The 

disparity vector is added to the location of the top-left sample of the current block yielding the 

location of the top-left sample of the reference block. Then, similar as for motion compensation, 

the block of residual samples in a reference view that is located at the derived reference location 

is subtracted from the current residual and only the resulting difference signal is transform 

coded. If the disparity vector points to a sub-sample location, the residual prediction signal is 

obtained by interpolating the residual samples of the reference view using a bi-linear filter. 



 

 

Figure 13: Derivation of the location of reference residual block. 

 

The usage of the inter-view residual prediction can be adaptively selected on a block basis, or 

more accurately on a coding unit (CU) basis. For that purpose, if any sample of the potential 

reference residual signal is unequal to 0, a flag indicating the usage of inter-view residual 

prediction is transmitted as part of the CU syntax. If this flag is equal to 1, the current residual 

signal is predicted using the potentially interpolated reference residual signal and only the 

difference is transmitted using transform coding. Otherwise, the residual of the current block is 

conventionally coded using the HEVC transform coding. 

2.2.6 Adjustment of QP of texture based on depth data 

In order to improve perceptual quality of coded texture, a tool for bit assignment in the texture 

layer was developed. The basic idea is to increase texture quality of objects in the foreground 

and to increase compression factor (decrease texture quality) for objects in the background. The 

quality is adjusted in coding units (CUs) with use of quantization parameter QP that depends on 

the corresponding depth values. The QP adjustment is done simultaneously in coder and decoder 

so that no additional information is send. Described tool is disabled in the base view to preserve 

HEVC compatibility. The texture QP is modified in the following way: 

              
       

      
    

   
 

 

 

Where     is adjusted    value for a CU with corresponding disparity     .   

2.3 Coding of Depth Maps 

For the coding of depth maps, basically the same concepts of intra-prediction, motion-

compensated prediction, disparity-compensated prediction, and transform coding as for the 

coding of the video pictures are used. However, some tools have been modified for depth maps, 

other tools have been generally disabled, and additional tools have been added. 



As a first difference to the coding of video pictures, the inter-view motion and residual 

prediction as described in sec. 2.2.2 and sec. 2.2.4, respectively, are not used for depth coding. 

Instead, motion parameters are derived based on coded data in the associated video pictures as 

will be described in sec. 2.3.7 below. The other differences are described in the following 

subsections. 

2.3.1 Disabled chrominance coding 

Depth maps may be coded in 4:0:0 chroma sampling format. 

2.3.2 Non-linear depth representation 

As alternative representation of depth maps, the depth may be non-linearly scaled as described in 

the following. 

The human perception of depth depends on absolute distance of viewed objects, therefore the 

internal depth representation is non-linear. Closer objects are represented more accurately than 

distant ones. Thanks to that, subjective quality of synthesized views is improved. 

Internal depth sample values are defined by the following power-law expressions, similar as in 

the case of well known gamma correction: 

 

Exponent is automatically chosen by the encoder with use of base QP for the depth and sent to 

decoder in the encoded bitstream: 

                                                       

Depth map samples are represented on increased number of bits with use of IBDI (Internal Bit 

Depth Increase) tool. 

2.3.3 Z-near z-far compensated weighted prediction 

Proposed znear-zfar compensation (ZZC) is a new coding tool for multiview video, designed 

especially for inter-frame depth map coding.  

The concept of ZZC exploits the observation that frames from different views and time instances 

of encoded depth sequence may have different znear and zfar parameters. The mentioned znear 

and zfar parameters describe range of depths represented in a gray-scale depth map. If znear and 

zfar parameters are different for two frames, then given depth value is represented with different 

gray-scale values in those depth maps. Consequently, using one of such depth maps  

as a reference for the other one will result in a poor prediction. 

To overcome this problem, a new ZZC coding tool is proposed. Prior to any inter-frame depth 

map prediction, each depth map that resides on the codec reference picture list is scaled, so that 



gray-scale depth values in scaled image and currently coded image refer to the same depth.  

As a result, depth maps with compensated znear and zfar range are used for prediction. 

Values used for prediction (instead of the original ones) are calculated as follows: 

      
              

              
     

               
              

 

Where LT is compensated disparity in range depth znear T  to zfar T  and LS is original disparity in  

depth range znear S and  zfar S. 

2.3.4 Modified motion compensation and motion vector coding 

In contrast to natural video, depth maps are characterized by sharp edges and large regions with 

nearly constant values. The eight-tap interpolation filters that are used for motion-compensated 

interpolation in HEVC, can produce ringing artifacts at sharp edges in depth maps, which are 

visible as disturbing components in synthesized intermediate views. For avoiding this issue and 

for decreasing the encoder and decoder complexity, the motion-compensated prediction (MCP) 

as well as the disparity-compensated prediction (DCP) has been modified in a way that no 

interpolation is used. That means, for depth maps, the inter-picture prediction is always 

performed with full-sample accuracy. For the actual MCP or DCP, a block of samples in the 

reference picture is directly used as prediction signal without interpolating any intermediate 

samples. In order to avoid the transmission of motion and disparity vectors with an unnecessary 

accuracy, full-sample accurate motion and disparity vectors are used for coding depth maps. The 

transmitted motion vector differences are coded using full-sample instead of quarter-sample 

precision. 

2.3.5 Disabling of in-loop filtering 

The in-loop filters in the HEVC design have been particularly designed for the coding of natural 

video. For the coding of depth maps, these filters are less useful. In order to decrease the encoder 

and decoder complexity, the in-loop filters have been disabled for depth coding. This includes 

the following filters: 

 the de-blocking filter; 

 the adaptive loop filter (Wiener  filter); 

 the sample-adaptive loop filter. 

2.3.6 Depth modeling modes 

Depth maps are mainly characterized by sharp edges (which represent object borders) and large 

areas of nearly constant or slowly varying sample values (which represent object areas). While 

the HEVC intra prediction and transform coding is well-suited for nearly constant regions, it can 

result in significant coding artifacts at sharp edges, which are visible in synthesized intermediate 

views. For a better representation of edges in depth maps, four new intra prediction modes for 

depth coding are added. In all four modes, a depth block is approximated by a model that 

partitions the area of the block into two non-rectangular regions, where each region is 

represented by a constant value. The information required for such a model consists of two 

elements, namely the partition information, specifying the region each sample belongs to, and 

the region value information, specifying a constant value for the samples of the corresponding 

region. Such a region value is referred to as constant partition value (CPV) in the following. Two 

different partition types are used, namely Wedgelets and Contours, which differ in the way the 

segmentation of the depth block is derived. The depth modeling modes are integrated as an 

alternative to the conventional intra prediction modes specified in HEVC. Similar as for the intra 

prediction modes, a residual representing the difference between the approximation and the 



original depth signal can be transmitted via transform coding. In the following, the 

approximation of depth blocks using the four new depth modeling modes is described in more 

detail. 

It is differentiated between Wedgelet and Contour partitioning. For a Wedgelet partition, the two 

regions are defined to be separated by a straight line, as illustrated in Figure 14, in which the two 

regions are labeled with    and   . The separation line is determined by the start point   and the 

end point  , both located on different borders of the block. For the continuous signal space (see 

Figure 14, left), the separation line can be described by the equation of a straight line. The 

middle image of Figure 14 illustrates the partitioning for the discrete sample space. Here, the 

block consists of an array of samples with size       and the start and end points correspond 

to border samples. Although the separation line can be described by a line equation as well, the 

definition of regions    and    is different here, as only complete samples can be assigned as part 

of either of the two regions. For employing Wedgelet block partitions in the coding process, the 

partition information is stored in the form of partition patterns. Such a pattern consists of an 

array of size       and each element contains the binary information whether the 

corresponding sample belongs to region    or   . The regions    and    are represented by black 

and white samples in Figure 14 (right), respectively. 

 

 

Figure 14: Wedgelet partition of a block: continuous (left) and discrete signal space (middle) with 

corresponding partition pattern (right). 

 

Unlike for Wedgelets, the separation line between the two regions of a Contour partition of a 

block cannot be easily described by a geometrical function. As illustrated in Figure 15, the two 

regions    and    can be arbitrary shaped and even consist of multiple parts. Apart from that the 

properties of Contour and Wedgelet partitions are very similar. For employing Contour partitions 

in the coding process, the partition pattern (see example in Figure 15, right) is derived 

individually for each block from the signal of a reference block. Due to the lack of a functional 

description of the region separation line, no pattern lookup lists and consequently no search of 

the best matching partition are used for Contour partitions. 

 

 

Figure 15: Contour partition of a block: continuous (left) and discrete signal space (middle) with 

corresponding partition pattern (right). 



 

Apart from the partition information, either in form of a Wedgelet or a Contour partition, the 

second information required for modeling the signal of a depth block is the CPV of each of the 

two regions. For a given partition the best approximation is consequently achieved by using the 

mean value of the original depth signal of the corresponding region as the CPV. 

Four depth-modeling modes, which mainly differ in the way the partitioning is derived and 

transmitted, have been added: 

 Mode 1: Explicit Wedgelet signaling; 

 Mode 2: Intra-predicted Wedgelet partitioning; 

 Mode 3: Inter-component-predicted Wedgelet partitioning; 

 Mode 4: Inter-component-predicted Contour partitioning. 

These depth-modeling modes as well as the signaling of the modes and the constant partition 

values are described in the following four subsections. 

2.3.6.1 Mode 1: Explicit Wedgelet Signalization 

The basic principle of this mode is to find the best matching Wedgelet partition at the encoder 

and transmit the partition information in the bitstream. At the decoder the signal of the block is 

reconstructed using the transmitted partition information. 

The Wedgelet partition information for this mode is not predicted. At the encoder, a search over 

a set of Wedglet partitions is carried out using the original depth signal of the current block as a 

reference. During this search, the Wedgelet partition that yields the minimum distortion between 

the original signal and the Wedgelet approximation is selected. The resulting prediction signal is 

then evaluated using the conventional mode decision process. 

A fast search of the best matching partition is essential for employing Wedgelet models in the 

depth coding process. For this purpose, the patterns for all possible combinations of start and end 

point positions are generated and stored in a lookup table for each block size prior to the coding 

process. The Wedgelet pattern list contains only unique patterns. The resolution for the start and 

end positions used for generating the Wedgelet patterns depends on the block size. For 16x16 

and 32x32 blocks, the possible start and end positions are restricted to locations with an accuracy 

of 2 samples. For 8x8 blocks, full-sample accuracy is used, and for 4x4 blocks, half-sample 

accuracy is used. 

2.3.6.2 Mode 2: Intra-predicted Wedgelet Partitions 

The basic principle of this mode is to predict the Wedgelet partition from data of previously 

coded blocks in the same picture, i.e. by intra-picture prediction. For a better approximation, the 

predicted partition is refined by varying the line end position. Only the offset to the line end 

position is transmitted in the bitstream and at the decoder the signal of the block is reconstructed 

using the partition information that results from combining the predicted partition and the 

transmitted offset. 

 



 

Figure 16: Intra prediction of Wedgelet partition (blue) for the scenarios that the above reference block is 

either of type Wedgelet partition (left) or regular intra direction (right). 

 

The prediction process of this mode derives the line start position and the gradient from the 

information of previously coded blocks, i.e. the neighbor blocks left and above of the current 

block. Note that for some blocks one or both of the neighboring blocks are not available. In such 

a case the processing for this mode is carried out with setting the missing information to 

meaningful default values. As illustrated in Figure 16 two main prediction methods have to be 

distinguished: The first method covers the case when one of the two neighboring reference 

blocks is of type Wedgelet, shown in the example in Figure 16, left. The second method covers 

the case when the two neighboring reference blocks are not of type Wedgelet, but of type intra 

direction, which is the default intra coding type, shown in the example in Figure 16, right. 

If the reference block is of type Wedgelet, the prediction process works as follows: The principle 

of this method is to continue the reference Wedgelet into the current block, which is only 

possible if the continuation of the separation line of the reference Wedgelet actually intersects 

the current block. Therefore, it is first checked whether it is possible to continue the reference 

Wedgelet. In case the check is positive, the start position    and the end position    are 

predicted by calculating the intersection points of the continued line with block border samples. 

If the reference block is of type intra direction, the prediction process works as follows: First, the 

gradient is derived from the intra prediction direction. As the intra direction is only provided in 

the form of an abstract index, a mapping or conversion function is defined that associates each 

intra prediction mode with a gradient. Second, the start position    is derived from information 

that is also available at the decoder, namely the adjacent samples of the left and above 

neighboring block, by selecting the sample position with the maximum slope. Finally, the end 

position    is calculated from the start point and the gradient. 

The line end position offset for refining the Wedgelet partition is not predicted, but searched 

within the estimation process at the encoder. For the search, candidate partitions are generated 

from the predicted Wedgelet partition and an offset value for the line end position     , as 

illustrated in Figure 16. By iterating over a range of offset values and comparing the distortion of 

the different resulting Wedgelet partitions, the offset value of the best matching Wedgelet 

partition is determined using a distortion measure. 

2.3.6.3 Mode 3: Inter-component prediction of Wedgelet partitions 

The basic principle of this mode is to predict the Wedgelet partition from a texture reference 

block, namely the co-located block of the associated video picture. This type of prediction is 



referred to as inter-component prediction. Unlike temporal or inter-view prediction, no motion or 

disparity compensation is used, as the texture reference picture shows the scene at the same time 

and from the same perspective. The Wedgelet partition information is not transmitted for this 

mode and consequently, the inter-component prediction uses the reconstructed video picture as a 

reference. For efficient processing, only the luminance signal of the reference block is taken into 

account, as this typically contains the most significant information for predicting the partition of 

a depth block, i.e. the edges between objects. 

 

 

Figure 17: Prediction of Wedgelet (blue) and Contour (green) partition information from texture luma 

reference. 

 

The prediction of a Wedgelet partition pattern from the texture reference is illustrated in the top 

row of Figure 17. For this purpose, a search over the set of possible Wedgelet partitions is 

carried out. The Wedgelet partition that yields the smallest distortion for the co-located texture 

block is used for approximating the current depth block. 

2.3.6.4 Mode 4: Inter-component prediction of Contour partitions 

The basic principle of this mode is to predict a Contour partition from a texture reference block 

by inter-component prediction. Like for the inter-component prediction of a Wedgelet partition 

pattern, the reconstructed luminance signal of the co-located block of the associated video 

picture is used as a reference, as illustrated in the bottom row of Figure 17. In contrast to 

Wedgelet partitions, the prediction of a Contour partition is realized by a thresholding method. 

Here, the mean value of the texture reference block is set as the threshold and depending on 

whether the value of a sample is above or below the sample position is marked as part of region 

   or    in the resulting Contour partition pattern. 

2.3.6.5 Constant partition value coding 

The method for CPV coding is the same for all four modes introduced above, as it does not 

distinguish between partition types, but rather assumes that a partition pattern is given for the 

current depth block. As illustrated in Figure 18, three types of CPVs are differentiated: original, 

predicted, and delta CPVs. 

 



 

Figure 18: CPVs of block partitions: CPV prediction from adjacent samples of neighboring blocks (left) and 

cross section of block (right), showing relation between different CPV types. 

 

The cross section of the block in Figure 18, right, schematically shows that the original CPVs are 

calculated as the mean value of the signal covered by the corresponding region. Although these 

values lead to the best approximation for the given partition, they are not available at the decoder 

as they require the original signal. Therefore prediction of CPVs is introduced. These predicted 

CPVs are derived from information that is also available at the decoder, namely the adjacent 

samples of the neighboring left and top block, as illustrated in Figure 18, left, where the green 

and light green line segments highlight the mapping of adjacent samples to the partitions. Again, 

the predicted CPVs are calculated as the mean value of the corresponding sample values. 

Depending on the similarity between original signal of the block and adjacent samples, the 

predicted and original CPVs may differ significantly. This difference is referred to as delta 

CPVs. By calculating the delta CPVs at the encoder and transmitting them in the bit stream, it is 

possible to reconstruct the CPVs at the decoder.  

Although the distortion of the reconstructed signal is considerably reduced by the delta CPVs, 

the benefit of this approach is delimited by the additional bit rate required for transmitting the 

delta CPVs. Therefore, a linear quantization is introduced for the delta CPVs. This method is 

also used in transform coding and the step size of the quantization is set as a function of the QP. 

The delta CPVs are linearly quantized at the encoder and de-quantized before reconstruction at 

the decoder. 

In case the distortion is not measured for the original depth, but for synthesized views, the delta 

CPV derivation process is extended by a minimum distortion search, which iterates over all 

possible delta CPV combinations for the two partitions. For the sake of efficient processing and 

signaling the range of tested values is limited. The search results in the combination of delta 

CPVs that causes the minimum distortion in synthesized views and for transmission these values 

are finally quantized. 

2.3.6.6 Mode pre-selection 

In the encoding process, for an intra-coded CU, one of the described depth modeling modes or 

one of the conventional intra prediction modes is selected. If a depth modeling mode is selected, 

the selected mode and the associated prediction data have to be signaled in the bitstream in 

addition to a syntax element that specifies the usage of a depth modeling mode. The following 

four depth modeling modes are defined:  

 Wedgelet_ModelIntra: Intra modeling of Wedgelet block partition 

 Wedgelet_PredIntra: Intra prediction of Wedgelet block partition 

 Wedgelet_PredTexture: Inter-component prediction of Wedgelet block partition 

 Contour_PredTexture: Inter-component prediction of Contour block partition 



Each of the four modes can be applied with or without delta CPVs, resulting in eight different 

mode_IDs for signaling the decoder, which type of processing has to be applied for prediction 

and reconstruction of the block. 

In order to reduce the encoder processing and signaling effort for block partition coding, a mode 

pre-selection is implemented, which excludes depth modeling modes that are very unlikely to be 

selected for the current block. One pre-selection method is to disable modes whose probability is 

very low for small block sizes. Therefore Wedgelet_PredIntra and Contour_PredTexture are 

disabled for block sizes smaller than 8×8. A second pre-selection method applies to the modes 

based on inter-component prediction, namely Wedgelet_PredTexture and Contour_PredTexture. 

This method adaptively disables the modes, if it is very unlikely that a meaningful partition 

pattern can be derived from the texture reference. Such blocks are characterized by having 

relatively constant pixel values without significant edges or contours, as illustrated by the upper 

example in Figure 19. For identifying them, their statistical dispersion is analyzed, namely the 

mean absolute deviation (MAD) of the luminance signal of the texture reference block. If the 

MAD value is below a certain threshold, the modes are disabled. Instead of a fixed value, the 

threshold is set as a function of the QP, which has the effect, that for higher QP values these two 

modes are excluded more frequently. 

 

 

Figure 19: Mode preselection based on texture luma variance. 

 

2.3.6.7 Signaling in the bitstream 

The depth modeling modes are implemented as an additional set of block coding modes into the 

intra path of the 3D video codec. Therefore, an additional flag prior to the mode information is 

transmitted in the bitstream, signaling whether a block partition mode is used or not. In case this 

flag is not set, normal intra mode signaling follows. Otherwise, a mode_ID is signaled, which 

specifies the actual block partition mode and if delta CPVs are also transmitted or not. The 

number of bins required depends on the decision of the mode pre-selection methods, ranging 

from three bins, if all eight modes are enabled, to one bin, if the number of modes is reduced to 

two due to pre-selection decisions described in sec. 2.3.6.6. 

Mode Wedgelet_ModelIntra: For this mode the Wedgelet partition information is explicitly 

signaled in the bitstream by the index of the corresponding pattern in the Wedgelet pattern 

lookup list. The index is signaled with a fixed number of bins. The number of bins used for 

transmitting the index is given by the size of the list of possible Wedgelet patterns. 

Mode Wedgelet_PredIntra: For this mode only the refinement of the Wedgelet partition in 

terms of the line end position offset is signaled in the bitstream. A first bin indicates whether the 

offset is zero or not. If the offset is not zero,     additional bins follow for signaling offset 



values in the range    , where the first bin represents the sign and the remaining   bins the 

absolute value of the offset.   is set equal to 2. 

Mode Wedgelet_PredTexture: For this mode no additional signaling regarding the partition 

information is required. 

Mode Wedgelet_PredTexture: For this mode no additional signaling regarding the partition 

information is required. 

Delta CPVs: In case the delta CPVs are transmitted (which is signaled by the transmitted 

mode_ID), the two quantized values are signaled in the bitstream consecutively. For each CPV, a 

bin string consisting of the absolute value and the sign is transmitted. The sign is coded as a 

single bin, and the absolute value is coded using a truncated unary code (with 13 bins in the 

unary part and an exponential golomb code suffix). 

2.3.7 Motion parameter inheritance 

The basic idea behind the motion parameter inheritance (MPI) mode is that the motion 

characteristics of the video signal and its associated depth map should be similar, since they are 

both projections of the same scenery from the same viewpoint at the same time instant. 

Therefore, in order to enable efficient encoding of the depth map data, a new coding mode that 

allows inheritance of the treeblock subdivision into CUs and PUs and their corresponding motion 

parameters from the video signal has been introduced. Since the motion vectors of the video 

signal have quarter-sample accuracy, whereas for the depth map signal only full-sample accuracy 

is used, in the inheritance process the motion vectors are quantized to their nearest full-sample 

position. It can be adaptively decided for each block of the depth map, whether the motion data 

are inherited from the co-located region of the video signal or if new motion data are transmitted 

(cp. Figure 20). For signaling the MPI coding mode, the merge/skip mode syntax is used. The 

list of possible merge candidates has been extended in a way that, for depth map coding, the first 

merge candidate refers to merging with the corresponding block from the associated video 

signal. 

 

 

Figure 20: Illustration of the concept of motion parameter inheritance. 

 

Independent of the partitioning of the video picture into its CUs, the MPI mode can be used at 

any level of the treeblock hierarchy for the depth map. If the MPI mode is indicated at a higher 

level of the depth map coding tree, corresponding to a CU size that is larger than the CU size that 

is used for the video signal, the CU/PU subdivision, together with the corresponding motion 

data, is inherited from the video signal. This makes it possible to specify once for a whole 

treeblock, typically corresponding to 64 × 64 image samples, that the whole partitioning of this 



region into its CUs and PUs for the video signal is also applied to the depth map signal. In the 

other case, if MPI is indicated at a level of the coding tree that corresponds to the same or a 

smaller CU size than the CU size that is used for the video signal, only the motion data are 

inherited from the video signal. Since, when using MPI, not only the partitioning and the motion 

vectors, but also the reference picture indices are inherited from the video signal, it has to be 

ensured, that the depth maps that correspond to the video reference pictures are also available in 

the reference picture buffer for the depth map signal. The MPI mode is only possible, if the 

whole region of the video signal, that the motion data and partitioning are to be inherited from, is 

coded using inter prediction. 

2.4 Encoder Control 

For mode decision and motion estimation, a Lagrangian technique by which a cost measure 

      is determined for each candidate mode or parameter, and the mode or parameter with 

the smallest cost measure is selected.   is the distortion that is obtained by coding the considered 

block in a particular mode or with a particular parameter,   is the number of bits that are 

required for representing a block in a given mode or that are required for coding a given 

parameter, and   is the Lagrangian multiplier that is derived based on the used quantization 

parameter. As measure for the distortion, the sum of squared differences (SSD) or the sum of 

absolute differences (SAD) between the original and the reconstructed sample values is used (for 

the coding of depth maps this measure was modified as described below). 

For the coding of depth maps, basically the same decision process is used. However, the 

distortion measure has been replaced with a measure that considers the distortion in synthesized 

intermediate views. This technique is described in the following subsection. 

2.4.1 View Synthesis Optimization 

The geometry information given by depth data is exploited only indirectly in the rendering 

process. Hence, the lossy coding of depth data causes distortions in the synthesized intermediate 

views. The depth map itself is not visible for a viewer. The efficiency of depth coding is 

improved by considering this property. As a consequence, the distortion measure for the mode 

decision process for depth maps is modified in a way that the synthesized view distortion is used 

instead of the depth map distortion. Therefore, the synthesized view distortion change (SVDC) is 

used as distortion measure. 

The computation of the SVDC requires the usage of rendering functionalities in the encoding 

process. Since computational complexity is a critical factor in distortion calculation, a method, 

which is also referred to as renderer model, has been utilized that allows minimal re-rendering of 

parts of the synthesized view that are affected by a depth distortion. For this, a special renderer is 

included in the encoder, which supports the basic functionalities, shared by most rendering 

approaches, like sub-pixel accurate warping, hole filling and view blending. 

2.4.1.1 Synthesized View Distortion Change (SVDC) 

Since the encoding algorithm operates block-based, the mapping of depth distortion to the 

synthesized view distortion must be block-based as well. Moreover, the sum of partial distortions 

(of sub-blocks) must be equal to the overall distortion of a block in order to enable an 

independent distortion calculation for all partitions of a subdivided block, as hierarchical block 

structures are used in HEVC. 

A relationship between a depth map    and a synthesized texture   
  is created by the used view 

synthesis approach. However, disocclusions and occlusions prevent a bijective mapping of the 



distorted areas in depth maps to distorted areas in the synthesized views. For example, areas in 

the synthesized view, which depend on depth data of a considered block, can become visible due 

to the distortions in other depth blocks; or vice versa, the distortion of a depth block has no effect 

on the synthesized view, since the block is occluded there. Hence, an exact mapping between the 

distortion of a block of the depth data and an associated distortion in the synthesized view is not 

possible considering only the depth data within a currently processed block.  

For resolving this issue, the change of the overall distortion in a synthesized view depending on 

the change of the depth data within a block  is determined, while simultaneously also 

considering depth data outside the block  . For this purpose, the synthesized view distortion 

change (SVDC) is defined as distortion difference    between two synthesized textures   
  and 

   , 

 

 
                                  

 

       

     
                    

 

       

 (1) 

        denotes a reference texture rendered from original video and depth data.   represents the 

set of all samples in the synthesized view. To illustrate how the textures   
  and    

  are obtained, 

the SVDC definition from eq. (1) is also depicted in Figure 21.   
  denotes a texture rendered 

from a depth map    consisting of encoded depth data in already encoded blocks and original 

depth data in the other blocks. The current block  , for which the distortion has to be computed, 

contains original depth data as well. For the synthesis of the texture    
  a depth map     is used 

that differs from the depth map    in that it contains the distorted depth data also for the current 

block  . 

 

 

Figure 21: Definition of the SVDC related to the distorted depth data of the block   depicted by the hatched 

area in the bottom branch; VS denotes the view synthesis step and SSD stands for sum of squared differences. 

 

The SVDC definition above is motivated by three reasons. First, an exact distortion measure is 

provided, therefore the overall distortion of the synthesized view and thereby disocclusions and 

occlusions are considered. Second, the measure is related to a block and third partial distortions 

are additive. For the latter two reasons, the change of the synthesized view distortion caused by a 

change of a depth block is employed instead of the total synthesized view distortion itself. 

Figure 21 shows the SVDC definition for the extrapolation of virtual views from one input view 

only. However, the encoder side view synthesis algorithm supports also the interpolation of the 

texture   
  from a left and a right view. Hence, rendering requires a left      and a right      depth 

map. To extend the SVDC computation to this two view case, the original depth map of the 

second view can be used when encoding the first depth map. Subsequently the first already 



encoded depth map can be utilized for the SVDC computation when encoding the second depth 

map. 

2.4.1.2 Efficient Computation of the SVDC 

A straightforward approach to compute the SVDC would be the direct implementation of eq. (1). 

However, this would require the complete rendering of the synthesized textures   
  and    

  and a 

rendering of a whole view is computational too complex to be feasible in a rate-distortion 

optimization process. To overcome this problem, a method which enables a fast computation of 

the SVDC and is integrated in the encoder. 

Renderer Model 

The renderer model provides three basic functionalities to the encoder: Initialization, partial re-

rendering, and SVDC calculation.  

 The initialization of the renderer model is carried out before the encoding of a depth map 

is started. In the initialization process, the complete synthesized view is rendered using 

the original input depth maps and the input textures. The input depth maps are stored as 

the renderer models depth states      and      and the rendered view as the synthesized 

view state   
 . Intermediate variables used in the rendering process are also stored to 

enable a fast re-rendering.  

 Partial re-rendering is carried out to update the renderer model when the encoding of a 

block   is finished and the final depth data for the block is known. For this purpose, the 

reconstructed depth data and the position of block   are signaled to the renderer model. 

The renderer model changes the block in the depth state      or      from original to 

coded data and re-renders only local parts of the synthesized view state   
  and the 

intermediate variables that are affected by the change of the depth data. Thus, the 

renderer model is transferred to a state that is required to compute the SVDC for blocks 

of the depth data encoded subsequently.  

 For the computation of the SVDC, the position and the depth data of a block   to be 

tested are provided to the renderer model. The renderer model then computes the SVDC 

as defined in eq. (1). Here, re-rendering followed by the computation of the sum of 

squared distortions SSD is carried out. However, instead of considering all positions 

        again only positions affected by the depth change are considered. Note that the 

re-rendering carried out here does not modify any state variables of the renderer model. 

Hence, the SVDC can be computed for multiple depth candidates successively without 

the need to re-render with original data in block  .  

Re-Rendering and Error Calculation Algorithm 

The main objective of the algorithm is a computational low complex distortion calculation or 

state transition, hence a low complex re-rendering of the parts of the synthesized view that are 

affected by a depth change in one of the input depth maps. 

Conventional view synthesis consists of multiple steps such as warping of the input samples, 

interpolation at sub pixel positions, blending with a second view obtained similarly, and hole 

filling. Typically these steps are executed as independent algorithms that are applied 

successively using the results of the previous step. To enable fast re-rendering of only parts of 

the synthesized view, all steps are combined in single algorithm that can be applied pixel-wise to 

the input depth map. This allows a region-wise processing of the depth map, and thus an update 

of related regions in the synthesized view. 



This process is illustrated in Figure 22 for an example for rendering from a left view to the right. 

Rendering is applied row wise, hence all depicted signals represent one row of input, 

intermediate, or output data. The single signals are from bottom to top: the left input texture     , 
a shifting chart, the texture synthesized from left       the texture synthesized from right      , 

the blended texture    , and the reference texture        . The arrows denote the relationship 

between the single samples or sample positions of the signals. Dots shown in the shifting chart 

represent samples from the input view. Their horizontal position is equal to their position    in 

the synthesized view. The vertical position shows their disparities. Since the depth is 

monotonically decreasing with increasing disparity, the top-most samples in the chart are the 

samples closest to the camera. Hence, it can be seen from the shifting chart which samples are 

occluded in the synthesized view. 

 

 

Figure 22: Example for the dependencies between input, intermediate and output signals of the rendering or 

error calculation step. 

 

While a conventional view synthesis approach would carry out the single steps depicted from 

bottom to top for all samples in the intervals (a) to (g), the method supports an interval-wise 

processing. Hence, all steps are first conducted for interval (a) before continuing with interval 

(b). Re-rendering and error calculation are carried out by iterating only once over the input depth 

samples. If only the view synthesis distortion is calculated there is no need to store intermediate 

results in the state of the renderer model.  

The boundaries of an interval in the output view are defined by the warped positions     and     

of two neighboring input view samples at positions    and   . For warping, disparities are 

computed from the depth map as described in the beginning of sec. 4. Subsequently to the 

calculation of the interval boundaries, processing continues with interpolation, disocclusion 

handling, or occlusion handling: 

 Interpolation is carried out in non-occluded ranges that are not disoccluded, as for 

example in the intervals (a,c,d,g,h). The accuracy of the warping is higher than the 

accuracy given by the sampling rate of synthesized view; hence an interpolation at the 



full sample position      located between the interval boundaries     and     is carried 

out. For this, samples from an up-sampled version of the input texture       are mapped to 

the interpolation positions      in the synthesized view      . The position    in the up-

sampled view is derived from the distance of the interpolation position to the interval 

boundaries: 

 
      

   
     

 

       
     (2) 

The up-sampled view       is created in the initialization step by interpolating the input 

texture with quarter-sample accuracy using the FIR-filters specified for motion-

compensated interpolation in HEVC. 

 Disocclusions: If the width of the warped interval    –       is greater than two times the 

width of the sampling distance, as for example for interval (b), a disocclusion is assumed 

in the synthesized view. Instead of interpolation, hole filling is carried. For this purpose, 

the samples in the interval are set equal to the value of the sample belonging to the right 

interval boundary          (which belongs to the background). If the leftmost full sample 

position within the interval is close to the left interval border, it is assumed that it belongs 

to the foreground and it is set equal to the value of the left interval boundary         . 
Note, that the positions of disoccluded and filled samples are stored as additional 

information in the a filling map      . 

 Occlusions: Whether an interval is entirely occluded in the synthesized view, as for 

example interval (f), is determined by detecting if the interval boundaries are reversed 

(        ), hence no complex z-buffering is required. To derive whether other samples 

left to interval (f) are occluded, the rendering process stores the position of the 

foreground edge. This stored position is then be utilized when processing the next 

intervals, for example interval (e), to determine which parts of theses intervals are 

occluded. If re-rendering does not start at the right image border, the position of the last 

foreground edge is recovered by carrying out a search to the right of the changed depth 

samples. 

Sample values derived from interpolation or hole filling     
 , are instantly combined with the 

texture sample values from a second view     
  synthesized the same way and stored as 

intermediate variable in the renderer model. The result is the sample value that is used in the 

final synthesized view   
 . 

The rendering model supports two different configurations. In the first configuration, a rendering 

process is considered that renders intermediate views using both surrounding actually coded 

views. The second configuration considers rendering processes by which an intermediate view is 

rendered mainly from one coded view; the other coded view is only used for rendering areas that 

are not present in the preferred coded view. 

In the first configuration of the renderer model, the blending process is similar to that 

implemented in the VSRS software. Note that, although not depicted in Figure 22, a depth map 

    
  is rendered from     , when rendering     

 , using full sample accuracy. This depth map is 

used in the blending step. The decision how blending is carried out depends on the filling of 

    
  or     

  and the rendered depth maps     
  and     

 . While     
  and     

  have been obtained in 

the rendering process carried out before,     
  and     

  are stored as intermediate variables in the 

renderer model. The rules for determining the blended sample value          from     
       and 

    
        are specified in the following: 



 If the position (     is disoccluded (as indicated by the filling map) in only one view, the 

sample value from the other view is used. 

 Otherwise, if the position (     is disoccluded in both views, the backmost sample value 

is used. 

 Otherwise, if the depth difference retrieved from     
       and     

       is greater than a 

threshold, the front sample is used. 

 Otherwise, a weighted average of     
       and     

       , with a higher weight for the 

view that is closer to the virtual view position, is used. 

For the second configuration of the renderer model, the intermediate view is mainly rendered 

from one view and only holes are filled from the other view. If assuming that     
  is the main 

view, the rules to determine the sample value          from     
       and     

        are 

specified in the following: 

 If     
       indicates that there is no disocclusion at     

      , the sample value     
       

is used. 

 Otherwise, if     
       indicates that there is a disocclusion at     

       , the sample value 

    
       is used. 

 Otherwise, the average of     
       and     

       is used. 

If only partial re-rendering is carried out, the result   
  and all intermediate results are stored after 

the combination step and the processing of the interval is stopped. Otherwise, if the SVDC is 

determined, the distortion of the calculated value   
  is computed by comparing it to the 

reference       
  in the next step.  

To obtain the synthesized view distortion change the single intervals are rendered from right to 

left and the related distortions are summed up continuously. Moreover, and that is actually not 

depicted in Figure 22, the old per sample distortions of samples in the changed intervals are 

subtracted.  

The renderer model only re-renders those parts of the synthesized view that are affected by the 

considered depth change. It has to be considered that in some cases not only the intervals related 

to the changed depth values must be re-rendered, but also some neighboring intervals. A reason 

is that neighboring intervals that are occluded before a depth change can become visible after the 

depth change. The algorithm detects such cases and continues rendering, until all change samples 

in the synthesized view are updated. The detection is carried out while warping by also 

considering the old shifted sample positions as they had been prior to the depth change and 

storing the left-most old position. 

Chroma channels of the synthesized view are rendered together with the luma channel and are 

stored in the same resolution as luma. For this, up sampled versions of the chroma channels are 

created in the initialization step, which are later used for interpolation as described above. The 

sampling rate is increased by a factor of eight in horizontal direction and a factor of two in 

vertical direction using the interpolation FIR-filters that are specified for motion-compensated 

prediction in HEVC. However, the total distortion is obtained by a weighted sum of luma SVDC 

and chroma SVDC with a weight of 1 for luma and a weight of ¼ for each of the two chroma 

channels. 



2.4.1.3 Integration of the Renderer Model in the Encoder Control 

To enable rate-distortion optimization using the SVDC, the described renderer model is 

integrated in the encoding process for depth data. For this, the conventional distortion 

computation carried out is replaced with computation of the SVDC in all distortion computation 

steps related to the mode decision, coding unit (CU) partitioning, intra- and inter residual 

quadtree coding, motion parameter inheritance and merging. In order to reduce the 

computational complexity, the renderer model is not used for motion estimation or rate-distortion 

optimized quantization. Hence, only the inter prediction using the motion vector that has been 

obtained using the conventional motion search is compared to the intra and merge modes. 

Moreover, re-rendering is triggered in the renderer model when a final decision on the coding 

mode is taken within the encoder.  

The usage of the synthesized view distortion in the rate-distortion decisions requires the 

adaptation of the Lagrange multiplier  to obtain optimized coding results. This adaptation is 

carried out by adjusting the Lagrange multiplier using a constant factor. For this, the 

computation of rate-distortion cost  has been modified to 
 

                     (3) 

with    denoting the change of global synthesized view distortion as provided by the renderer 

model,    denoting a constant scaling factor, and   denoting the rate for the current coding mode. 

2.4.2 Optional Encoder Control for Renderable Regions in Dependent Views  

As an optional encoding technique, a mechanism is integrated by which regions in dependent 

views that can be rendered based on the transmitted independent view and the associated depth 

maps are identified. These regions are encoded by employing a modified cost measure, which 

mainly considers the required bit rates. After decoding, the renderable regions can be identified 

in the same way as in the encoder and replaced by rendered versions. 

 

 

Figure 23: Rendering from a left camera position to a right camera position using depth maps. 

 



The encoder identifies regions in the current frame that can be rendered from frames of the same 

time instance in a reference view based on the reconstructed depth maps of the reference view 

(see Figure 23). During the encoding process, the encoder checks for every CU, if all samples 

within that CU can be rendered. If all samples can be rendered, no residual is transmitted for this 

CU. In our HEVC-based codec, this means that for inter prediction the no_residual_data_flag 

for the CU is set equal to 1 or for intra-prediction the coded block flag of the TU's within the CU 

is set equal to 0. It should be noted that no syntax change is applied; only the encoder decision is 

modified. 

Due to the quadtree structure in HEVC, the rate-distortion (RD-) costs are compared between 

different granularities of possible block subdivisions for the R-D optimization. Rendering 

artifacts have a different impact on the subjective image/video quality perception than coding 

artifacts and cannot be compared using conventional measurements, such as MSE or PSNR. 

Samples in renderable regions are not taken into account for calculating the distortion term in the 

R-D optimized encoder decisions. In Figure 24, the right image shows a block subdivision that is 

one level deeper than the ones in the left image. The gray area labels the samples that can be 

rendered and that are therefore not considered in the calculation of the distortion. Thus, for 

example, the upper left block in the right image is not considered at all. Hence, the costs being 

compared are        (left block subdivision) against                       
        (right block subdivision), where the distortions are only calculated based on the white 

shaded samples. E.g., the distortion of block    is     . By this modification, blocks for 

which a subblock can be rendered are not automatically split, but also the entire block may be 

coded using a conventional coding mode if this improves the overall coding efficiency. 

 

 

Figure 24: Distortion calculation on different tree depths. Renderable samples (gray shaded) are not taken 

into account. 

 

For renderable blocks, the Lagrange multiplier   is scaled by a factor     and the calculation 

of the R-D costs is changed from         to        . 

2.4.3 Depth edge-based r-d optimization tuning 

As alternative or in addition to the r-d optimization for depth maps as described in sec. 2.4.1, the 

following r-d optimization for depth coding is included. The purpose of this additional rd-opt is 

to reduce edge ringing artifacts in depth maps. 

Normally cost is calculated as SAD between original and distorted (reconstructed) samples: 

                              

         

   

 



 

              

   

            
 

   

 

Where      is distortion,   is original distortion cost,       is modified distortion cost for 

depth, and     is a horizontal filter {1,-1} that detects vertical edges. 

3 View Synthesis Algorithms 

In the following, two view synthesis algorithms are described. Sec. 3.1 describes the fast 

1-dimensional view synthesis algorithm that is part of the HEVC-based 3DV software. It is also 

referred to as "VSRS 1d fast mode". In sec. 3.2, an alternative view synthesis algorithm is 

described. This algorithm is also referred to as "VSRS" and was developed during the 3DV 

exploration experiments. 

3.1 Fast 1-d View Synthesis (VSRS 1D Fast Mode) 

An overview of the view synthesis method is depicted in Figure 25. The method supports the 

interpolation of a synthesized view form a left      and right      texture with corresponding 

depth maps      and     . For this, two texture     
  and      

  are extrapolated from the left and the 

right view at the position of the virtual view. Subsequently, the similarity of     
  and     

  is 

enhanced before combining them to synthesized output view    . The single processing steps are 

discussed in the following. Without the loss of generality steps carried out independently for 

both, the left and the right view, are discussed for the left view only. 

 

 

Figure 25: Processing steps of the view synthesis approach. 

 



Similarly as the renderer model used in the encoder control (cp. sec. 2.4.1), the view synthesis 

algorithm supports two configurations. In the first configuration, which is referred to as 

interpolative rendering, an intermediate view is synthesized using both surrounding coded views. 

In the second configuration, which is referred to as non-interpolative rendering, an intermediate 

view is rendered mainly from one coded view; the other coded view is only used for rendering 

areas that are not present in the preferred coded view. 

3.1.1 Upsampling of input video pictures 

The luma channel of input texture      is upsampled by a factor of four in horizontal direction. 

Chroma channels are upsampled by a factor of eight in horizontal direction and two in vertical 

direction. For upsampling, the FIR filters specified in HEVC for the purpose of motion-

compensated interpolation are used. The resulting upsampled texture is denoted as      .  

3.1.2 Warping, interpolation and hole filling 

Warping, interpolation and hole filling are carried out in a combined step. For warping 

disparities are computed as described in the beginning of sec. 2. Warping, interpolation and hole 

filling is carried out line wise and within a line interval wise. Processing direction is from left to 

right. An interval in the output view is defined by the warped positions     and     of two 

neighboring input view samples at positions    and   . Subsequently to the calculation of the 

interval boundaries, processing continues depending on the width of the interval. 

 Interpolation is applied if the width of the warped interval    –      is less than or equal 

to two times the sampling distance. An interpolation at the full sample position      

located between the interval boundaries     and     is carried out. For this, samples from 

the up-sampled version of the input texture       are mapped to the interpolation positions 

     in the synthesized view      . The position    in the up-sampled view is derived 

from the distance of the interpolation position to the interval boundaries: 

 
      

   
     

 

       
     (4) 

 Disocclusions: If the width of the warped interval    –      is greater than two times the 

width of the sampling distance a disocclusion is assumed in the synthesized view. Instead 

of interpolation hole filling is carried. For this purpose samples in the interval are set to 

the value of sample belonging to the right interval boundary          (which belongs to 

the background). If the leftmost full sample position within the interval is close to the left 

interval border it is assumed that it belongs to the foreground and it is set to the value of 

the left interval boundary         . Disoccluded and filled sample position are stored in 

the filling map      .  

 Occlusions: If the boundaries of an interval are reversed (        ) the interval is 

occluded in the synthesized view. Rendering at a full sample position close to   
  might 

be carried out, if the next interval is not occluded and   
  belongs to a foreground object. 

Moreover, the algorithm uses the property that occluded background intervals are 

automatically overwritten by foreground objects in the synthesized view      , due to 

the processing direction from left to right.  

Chroma channels of the synthesized view are rendered together with luma channel and stored in 

the same resolution as luma. Moreover, if interpolative rendering is used, also a depth map     
  is 



extrapolated with full sample accuracy from the input depth map      within the steps described 

above. 

3.1.3 Reliability map creation 

In this step the filling map     
  is converted to the reliability map     

 . If interpolative rendering is 

used, positions marked as disocclusions in     
  are mapped to a reliability of 0. In areas located 

right to a disocclusion with a width of six samples the reliability is linearly increased from 0 to 

255 from left to right in horizontal direction. All other samples are assigned with a reliability of 

255. If non-interpolative rendering is used, positions marked as disocclusions in     
  are mapped 

to a reliability of 0. All other samples are assigned with a reliability of 255. 

3.1.4 Similarity enhancement 

In this step the histogram of       is adapted to the histogram of      . For this purpose a look up 

table (LUT) realizing a function   is created, that is subsequently applied to map the samples of 

      to adapt their values. 

The function   and the corresponding LUT are obtained by approximately solving  

 
        

           
   (5) 

where      denotes the histogram only regarding samples at positions       with reliabilities 

    
       and     

       of 255. Chroma channels are treated in the same way. 

3.1.5 Combination 

      and       are combined to obtain the synthesized output view in this step.  

In the interpolative rendering mode is used, the decision how blending is carried out depends on 

the reliability maps     
  or     

  and the rendered depth maps     
  and     

 . The rules for 

determining the blended sample value          from     
       and     

        are given in the 

following: 

 If position (     is disoccluded (reliability of 0) in only one view, the sample value from 

the other view is used. 

 Otherwise, if position (     is disoccluded in both views, the backmost sample value is 

used. 

 Otherwise, if the depth difference retrieved form     
       and     

       is above a 

threshold, the front sample is used. 

 Otherwise, if one sample is not reliable with a value of 255, a weighted average with the 

given reliabilities as weights is used. 

 Otherwise, a weighted average of     
       and     

        with a higher weight for the 

view that is closer to the virtual view position is used. 

If the non-interpolative rendering mode is used, the intermediate view is mainly rendered from 

one view are utilized and only holes are filled from the other view. Assuming     
  is the main 

view, the rules for determining the sample value          from     
       and     

        are 

given in the following: 

 If     
       is equal to 255 or     

       is equal 0, the sample value     
       is used. 



 Otherwise, if     
       is equal to 0, the sample value     

       is used. 

 Otherwise, a weighted average with the given reliabilities as weights is used. 

3.1.6 Chroma decimation 

To convert the 4:4:4 YUV representation obtained by rendering to the required 4:2:0 output, 

chroma channels are decimated by a factor of two in horizontal and vertical direction using the 

FIR filter (1;2;1). 

3.2 VSRS (alternative view synthesis algorithm) 

The VSRS algorithm was developed during the MPEG 3DV Exploration Experiments. VSRS 

takes two reference views and two depth maps as input to generate a synthesized virtual view. 

The intrinsic and extrinsic camera parameters are required and 1D parallel and non-parallel 

camera setups are supported.  

The software has two main modes referred to as “General mode” and “1D mode”. The reference 

views are reprojected to the target viewpoint using pixel-by-pixel mapping based on 3D warping 

in “General mode”, or horizontal pixel shifting in “1D mode”. 

3.2.1 General mode 

In the general mode, virtual views are generated by a technique referred to as “3D warping”. 

This process involves two steps. At first the original view (reference view) is projected into 3D 

world space using the corresponding reference depth map. Then the 3D space points are 

projected into the image plane of the “virtual” view. For this, the intrinsic camera parameters A, 

and extrinsic camera parameters E=[R|t] are required. The intrinsic matrix A, transforms the 3D 

camera coordinates to its 2D image coordinates. The extrinsic matrix E=[R|t] transforms the 

world coordinates to camera coordinates, which is composed of rotation matrix R and translation 

vector t. The two-step warping can be formulated in two equations as in eq. (6) and (8). First a 

pixel (ur, vr) in the reference view is warped to the world coordinates (Xw, Yw, Zw), using the 

depth of the reference view: 
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where subscript r indicates the reference view and zr is the depth value in the reference view at 

location (ur, vr) calculated from 
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where v is an 8-bit intensity of the depth map value. It is noted that the values z, Znear, and Zfar 

are assumed to be either all positive or all negative values. 

Then the 3D point is mapped to the virtual view: 
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where subscript v refers to the virtual view. 

The general mode is based on a "reverse warping" algorithm. Instead of forward warping the left 

and right reference views to the virtual location, the left and right depth maps are warped to the 

virtual view location. Then after filtering, these depth maps are used to warp the reference views 

to the virtual view. This results in a higher rendering quality of the final synthesized view. Figure 

26 depicts the flow diagram of the general mode. 

 

 

Figure 26: Flow diagram for VSRS general mode. 

 

The steps of VSRS general mode are briefly described below: 

1. First, the two depth maps are mapped to the target viewpoint. E.g. the left reference depth is 

warped to the virtual view location using eq. (6) and (8). If multiple pixels warp to the same 

location in the virtual view, then the pixel closest to the camera wins, so foreground pixels will 
occlude background pixels. The right depth map is also warped in a similar way. We denote 
these warped depth maps as DL’ and DR’, respectively. 

2. The mapped depth maps DL’ and DR’ may contain small holes. Small holes which are caused 
by rounding to integer coordinates are filled by a series of median filtering. Furthermore, 
binary masks for each side are maintained to indicate larger holes, for example caused by 
occlusions that remain after filtering. During the following steps, these binary masks are used 
and updated if necessary (for example during hole filling in step 4). 



3. Next, the left and right texture reference views are mapped to the target viewpoint using the 
filtered depth map DL’ and DR’. So two texture images at the target viewpoint are obtained, 
one generated from the left reference view and the other from the right reference view. We 
denote them here as VL’ and VR’, respectively. Note that DL’ is used to warp the left reference, 
and DR’ is used to warp the right reference. 

4. Hole areas in the mapped texture images VL’ and VR’, which are caused by occlusion, are 
filled by pixels from the other mapped texture image. So holes in VL’ are filled from non-hole 
areas in VR’ and vice versa. 

5. Next, these two virtual images are blended. The general mode has two modes of blending: 
Blending-on and Blending-off. The Blending-on mode is a weighted blending based on the 
baseline distance. So pixels from the reference camera which is closer to the virtual view are 
assigned a higher weight, based on the baseline ratio. In Blending-off mode, all pixels visible 
in the closer reference view are copied to the virtual view, and only hole areas are filled from 
the farther reference view. During this step, the binary masks are merged to form one mask 
indicating remaining holes which are inpainted in the next step. 

6. Any remaining holes after blending are filled by an inpainting algorithm using the binary 
mask. Inpainting algorithms can be used to reconstruct damaged portions of images. 
Generally a mask is used to indicate which image regions need to be inpainted. Next, color 
information is propagated inward from the region boundaries, i.e., the known image 

information is used to fill in the missing areas. An inpainting example is show in Figure 27. 

Additionally, VSRS contains a Boundary Noise Removal algorithm. In this mode, the binary 

maps indicating holes caused by occlusion, are used to identify object boundaries. After 

identifying the background side of the holes based on the depth, the holes are expanded into the 

background. Then these areas in VL’ and VR’ are filled from the opposite reference view. This 

reduces noise around object boundaries, where foreground pixels are falsely projected into 

background objects due to depth errors. 

 

 

Figure 27: Inpainting: “damaged” image, mask, and result after inpainting. 

 

3.2.2 1-d mode 

VSRS provides a second synthesis mode other than the general "3D warping" as described 
above: 1D mode. This mode is implemented with assumptions that the optical axes of camera 
are in parallel and the views are rectified such that no vertical disparities exist. Under the 
assumption of 1D mode, formulations can be simpler than in the general case:  

 The rotation matrix for every camera is identical to each other. 

 The translation vectors of all cameras share the same translation in Y and Z directions, 
that is, Ty and Tz are constant for every view. 

 As a consequence rv zz   

 Views are corrected (distortion and vertical disparity are null), so vertical position of 
intersection of optical axis in sensors is constant  



So the 33A  matrix has the following form 
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The equation above is used to “warp” pixels from real views to the virtual one. 

 

Figure 28 depicts the flow diagram of the VSRS 1D-mode. 

 

 

Figure 28: Flow diagram for VSRS 1D mode. 

 

The algorithm proceeds as follows: 

1. In a preliminary phase,  

a. The chroma components are upsampled to 4:4:4 format (for implementation 
simplicity). 



b. For suppressing transient depth errors, the depth maps can be temporally filtered 
according to the variations of the color information if the 
TemporalImprovementOption is chosen. 

c. The color video may be further upsampled, if sub-pixel precision is specified in 
the configuration file, for example, half-pixel or quarter-pixel. 

2. During the warping process, the reference views and the depth maps are mapped to the 

target viewpoint using eq. (9), which is a 1D shifting on the samples. For each reference 

view, a binary mask is maintained indicating whether a pixel in the targeted map is filled or 
not (hole pixel). The warping procedure is also controlled by the splatting switch in 
configuration file. When splatting is selected, each pixel in the reference view may be 
mapped to two sample locations. Besides, two enhancement processing on warping 
(corresponding to CleanNoiseOption and WarpEnhancementOption) suppress some 
synthesis artifacts due to the texture-depth misalignment at object boundaries (which causes 
foreground pixels scattered to the background) and wrongly categorized holes in the 
foreground (which makes background pixels appear in the foreground). Warping of the 
unreliable pixels (which probably yield artifacts) is forbidden accordingly. 

3. Two warped images from left and right reference views are obtained from last step, which are 
then merged to a single image. This operation is also applied on warped depth maps and 
filling masks. In case of conflicts (two pixels present for the same target position), the 
MergingOption specified by the user is applied in the following way. 

a. Z-buffer only: Take the pixel closest to camera always. 

b. Averaging only: Mix colors using weights in reverse proportional to the distance 
of the virtual camera from the left and right reference views 

c. Adaptive merging: Use either the proximity criterion (a) if depth level difference is 
greater than a threshold or, (b) if depth levels are too similar, uses the weighting 
method. 

4. Hole areas in the warped images are filled by propagating the background pixels into the 
hole along the horizontal row. 

5. Final view image is downsampled to original size if necessary and transformed to 4:2:0 
format for output purposes. 

Additionally, VSRS 1D mode can use the boundary noise removal algorithm already described 
as final processing step in the section dedicated to the general mode. 

 
  



4 Software 

4.1 Software repository 
The source code for the software will be available in the MPEG SVN repository. An initial 

version of the software is available in the following SVN repository. 

 
https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/ 

 

For tool integration a branch for a company can be obtained by contacting: 

 

gerhard.tech@hhi.fraunhofer.de, 

kwegner@multimedia.edu.pl 

 

4.2 Build System 
The software can be build under linux using make. For Windows, solutions for different versions 

of Microsoft Visual Studio are provided. 

 

4.3 Software Structure 

The 3D-HEVC Test Model Software includes several applications and libraries for encoding, 

decoding and view synthesis:  

 Applications:  

o TAppEncoder, executable for bit stream generation 

o TAppDecoder, executable for reconstruction. 

o TAppRenderer, executable view synthesis 

 Libraries:  

o TAppCommon, library for handling encoder, decoder and renderer options and 

camera parameters 

o TLibEncoder, encoding functionalities 

o TLibDecoder, decoding functionalities 

o TLibRenderer, renderer functionalities 

o TLibCommon, common functionalities 

o TLibVideoIO, video input/output functionalities 

 

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/
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