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Abstract 

The Video working group has established the Final Draft International Standard (FDIS) and the 10th test 

model for MPEG Immersive Video during the 135th MPEG meeting (July 2021) after evaluating the 

core experiment results and related contributions. The test model consists of this document and the 

reference software, providing an encoder and decoder/renderer in alignment with the specification. This 

document serves as a source of general tutorial information on the MPEG Immersive Video (MIV) 

design. It defines terminology used, process and data flow, operating modes, and description of 

algorithmic components adopted by the video group for the test model. 

 

1. Introduction  

The MPEG-I project (ISO/IEC 23090) on coded representation of immersive media includes Part 2 

Omnidirectional MediA Format (OMAF) version 1 published in 2018 that supports 3 Degrees of 

Freedom (3DoF), where a userôs position is static, but its head can yaw, pitch and roll. However, 

rendering flat 360° video, i.e., supporting head rotations only, may generate visual discomfort especially 

when objects close to the viewer are rendered. 6DoF enables translation movements in horizontal, 

vertical, and depth directions in addition to 3DoF orientations. The translation support enables 

interactive motion parallax providing viewers with natural cues to their visual system and resulting in 

an enhanced perception of volume around them. At the 125th MPEG meeting, a call for proposals [1] 

was issued to enable head-scale movements within a limited space. This has resulted in the new part 

ISO/IEC 23090-12 Immersive Video (MIV).  

At the 129th MPEG meeting the fourth working draft of MIV has been realigned to use ISO/IEC 23090-

5 Video-based Point Cloud Compression (V-PCC) as a normative reference for terms, definitions, 

syntax, semantics and decoding processes. At the 130th MPEG meeting this alignment has been 

completed by restructuring Part 5 in a common specification Visual Volumetric Video-based Coding 



 

 

(V3C) and annex H Video-based Point Cloud Compression (V-PCC). V3C provides extension 

mechanisms for V-PCC and MIV. The terminology in this document reflects that of V3C and MIV. 

2. Scope 

The normative decoding process for MPEG Immersive Video (MIV) is specified in the Final Draft 

International Standard of MPEG Immersive Video (FDIS) [2]. The TMIV reference software (Annex 

A) provides a reference implementation of non-normative encoding and rendering techniques and the 

normative decoding process for the MIV standard. 

This document provides an algorithmic description for the TMIV encoder and decoder/renderer. The 

purpose of this document is to promote a common understanding of the coding features, in order to 

facilitate the assessment of the technical impact of new technologies during the standardization process. 

Common Test Conditions for MPEG Immersive Video [3] provides test conditions including TMIV-

based anchors.  

3. Terms and definitions 

For the purpose of this document, the following definitions apply in addition to the definitions in MIV 

specification [2] clause 3. 

Table 1: Terminology definitions used for TMIV  

Term Definition  

Additional view A source view that is to be pruned and packed in multiple 

patches. 

Basic view A source view that is packed in an atlas as a single patch. 

Clustering Combining pixels in a pruning mask to form patches. 

Culling Discarding part of a rendering input based on target viewport 

visibility tests. 

Entity An abstract concept to be defined in another standard. For 

example, entities may either represent different physical 

objects, or a segmentation of the scene based on aspects such 

as reflectance properties, or material definitions. 

Entity component A multi-level map indicating the entity of each pixel in a 

corresponding view representation. 

Entity layer A view representation of which all samples are either part of 

a single entity or non-occupied.  

Entity separation Extracting an entity layer per a view representation that 

includes the desired entity component. 



 

 

Geometry scaling Scaling of the geometry data prior to encoding and 

reconstructing the nominal resolution geometry data at the 

decoder side.  

Inpainting Filling missing pixels with matching values prior to 

outputting a requested target view. 

Mask aggregation Combination of pruning masks over a number of frames, 

resulting in an aggregated pruning mask. 

Metadata merging Combining parameters of encoded atlas groups. 

Occupancy scaling Scaling of the occupancy data prior to encoding and 

reconstructing the nominal resolution occupancy data at the 

decoder side.  

Omnidirectional view A view representation that enables rendering according to the 

user's viewing orientation, if consumed with a head-mounted 

device, or according to user's desired viewport otherwise, as 

if the user was in the spot where and when the view was 

captured. 

Patch packing Placing patches into an atlas without overlap of the occupied 

regions, resulting in patch parameters. 

Pose trace A navigation path of a virtual camera or an active viewer 

navigating the immersive content over time. It sets the view 

parameters per frame. 

Pruning Measuring the interview redundancy in additional views 

resulting in pruning masks. 

Pruning mask A mask on a view representation that indicates which pixels 

should be preserved. All other pixels may be pruned. 

Source splitting Partitioning views into multiple spatial groups to produce 

separable atlases. 

Source view Indicates source video material before encoding that 

corresponds to the format of a view representation, which 

may have been acquired by capture of a 3D scene by a real 

camera or by projection by a virtual camera onto a surface 

using source view parameters. 

Target view Indicates either perspective viewport or omnidirectional view 

at the desired viewing position and orientation. 



 

 

View labeling Classifying the source views as basic views or additional 

views. 

 

4. Description of encoder processes 

4.1 Introduction  

4.1.1 High-level description 

The TMIV encoder has a ñgroup-basedò encoder, described in Figure 1, at higher level which invokes 

for each group a ñsingle-groupò encoder described in Figure 2. The group-based encoder has the 

following stages:  

¶ Preparation of source material by: 

¶ Assessing the geometry (depth map) quality, if present, for each source view. 

¶ Splitting source views in groups. 

¶ Synthesizing an inpainted background view covering the whole field of view of the source 

views within each group. 

¶ Labeling source views as basic view or additional view. 

¶ Encoding of each group separately (using the associated subset of split source views). 

¶ Formatting of the bitstream (includes a merging substage to combine sub bitstreams of same type 

produced by each single-group encoder together) which is V3C sample stream with MIV 

extensions and related SEI messages. 

¶ If packed video is enabled, then geometry video data (GVD), attribute video data (AVD), and 

occupancy video data (OVD) can be combined into packed video data (PVD) per atlas. 

¶ Encoding video sub bitstreams based on their presence (i.e., the presence of GVD, AVD, OVD 

or PVD depends on the encoder configuration):  

a. HEVC encoding of video sub bitstreams (each separately) using HM.  

b. VVC encoding of video sub bitstreams (each separately) using VVenC. 

¶ Multiplexing to combine the formatted bitstream with the video sub bitstream into a single MIV-

compliant bitstream. 



 

 

   
Figure 1: Top -level diagram of the TMIV group -based encoder  

The single-group encoder acts on the selected source views for a given group and has the following 

stages: 

1. Automatic parameter selection to set the atlas parameters (i.e., number of atlases, and the frame 

size of each of the atlases). 

2. Separation of views into entity layers (optional stage). 

3. Pruning of redundant information, aggregating the pruned masks over an intra-period. and 

clustering of preserved pixels for each group and entity. 

4. Packing of patches and generation of video data per group (Figure 3). 

5. Quantization and scaling of geometry video data per atlas, if present. 

6. Scaling of occupancy video data per atlas, if present. 

The remainder of this section explains the encoder input, output, and each of the encoder processes in 

more detail. 



 

 

  

Figure 2: Top-level diagram of the TMIV single -group encoder  

 

 
Figure 3: Representing source views using patch atlases  



 

 

At the 132th MPEG meeting, Multiple Plane Images [10] have been introduced to TMIV supporting an 

alternative coding mechanism that uses transparency layers. 

4.1.2 Encoder inputs 

The input to the TMIV encoder consists of a list of source views (Figure 4). The source views represent 

projections of a 3D real or virtual scene. The source views can be in equirectangular, perspective, or 

orthographic projection. Each source view should at least have view parameters (camera intrinsics, 

camera extrinsics, geometry quantization, etc.). A source view may have a geometry component in the 

form of 8-16 bits raw video with range/invalid sample values. Also a source view may have texture 

attribute component in the form of YCBCR 4:2:0 10 bits. Additional optional attributes per source view 

are an entity map and a transparency attribute component. The set of components has to be the same for 

all source views. 

  

Figure 4: Input sourc e views composed of texture attribute and geometry components , and entity maps  

4.1.3 Encoder outputs 

The output of the TMIV encoder is a single file according to the V3C sample stream format containing 

a single V3C sequence. Most parameter sets have MIV extensions enabled, and common atlas data is 

present. The view parameter list is sent once, and depth quantization parameters (if present) are updated 

at each intra frame. For each of the regular atlases, there are sub bitstreams with patch data, geometry 

video data (if present), attribute video data (if present), occupancy video data (if present), and packed 

video data (if present). An atlas may be composed of multiple atlas tiles. Atlas and patch parameters 

include groups and entity ID's respectively1. 

The structure of a V3C bitstream (Figure 5) is as follows: 

 

1 There may be only one group and/or entity in which case group-based and/or entity-based coding is effectively disabled. 



 

 

¶ The V3C bitstream consists of a V3C unit stream (with carriage out of scope) or a V3C sample 

stream which is a simple container for a V3C unit stream.  

o At the start of the V3C unit stream, the V3C parameter set (VPS) is available in-band or 

out-of-band. The information in the VPS announces the presence of sub bitstreams, 

allowing the decoder to initialize sub decoders for all atlas and video sub bitstreams. 

o Each subsequent V3C unit has a payload that contains one or more access units of a sub 

bitstream. The V3C unit header identifies to which sub bitstream the payload applies. 

¶ The geometry video data (GVD), attribute video data (AVD), and occupancy video data (OVD) 

V3C units contain video sub bitstreams for a specific atlas component. While the standard is 

video codec agnostic, for the test model the video sub bitstreams are always HEVC Annex B 

streams.  

¶ TMIV also supports packed video data (PVD) V3C units that packs various video data types of 

multiple atlas tiles (per atlas) together.  

¶ The atlas data (AD) V3C unit contains an atlas sub bitstream which is also a network abstraction 

layer (NAL) unit stream, but instead of video frames there is a NAL unit called atlas tile layer 

(ATL) that carries a list of patch data units (PDU). Each PDU describes the relation between a 

patch in an atlas and the same patch in a (hypothetical) source view. The ATL is parameterized 

using the atlas sequence parameter set (ASPS), atlas adaptation parameter set (AAPS), and atlas 

frame parameter set (AFPS).  

¶ The common atlas data (CAD) V3C unit also contains an atlas sub bitstream, but the main NAL 

units are the common atlas sequence parameter set (CASPS) and the common atlas frame (CAF) 

that contains the view parameter list or updates thereof. 

¶ All sub bitstreams may contain SEI messages and both the CASPS MIV extension and ASPS 

may contain volumetric usability information (VUI).  

  



 

 

 

Figure 5: Stru cture of the V3C bitstream with MIV extensions.  
Some aspects of V3C that are not relevant to MIV have been omitted for clarity  

 

4.2 View preparation 

4.2.1 Distribution of source views in groups 

Source views can be divided into multiple groups. The grouping helps outputting local coherent 

projections of important regions (e.g., belonging to foreground objects or occluded regions) in the atlases 

per group as opposed to having fewer samples of those regions when processing all source views as a 

single group. An automatic process is implemented to select views per group, based on the view 

parameters list and the number of groups to obtain. The source views are being distributed accordingly 

in multiple branches, and each group is encoded independently of each other.  

Source splitting operates as follows: a views pool including all available source views is formed and the 

number of views per group is set (by dividing the number of source views by the number of groups). 

The view parameters list is used to identify the range the views are spanning in Cartesian scene 

coordinates. The dominant coordinate axis is selected as a basis to set key positions. Key positions are 

located at the maximum view positions of the dominant axis across view in the views pool. Distances of 

views to these key positions are computed. Based on the number of views for the group, the closest 

views to the first key position are selected and removed from the views pool. Then a second key position 

is identified, and the process is repeated covering the distribution of all source views across the chosen 

number of groups. 

4.2.2 Synthesis of inpainted background view 

The inpainting module creates synthetic texture and geometry data that is hidden from the source views, 

thereby reducing the missing data problem at the decoder-side. It creates an ERP view with inpainted 

background data. This view has the following properties: 



 

 

¶ It is placed in the center of the camera rig, i.e. the mean of the source camera positions. 

¶ Its field-of-view is the union of source view field-of-views (with some additional margin set in the 

configuration file, by default the margin is set to 30% of combined field-of-view). 

¶ Since the quality of the inpainted regions is lower than the original content, the resolution of the 

view is typically chosen lower than the resolution of the source views, hereby saving on bitrate and 

pixel-rate. This resolution is configurable. 

The following steps are taken: 

 

¶ A background view is synthesized from all available source views. The 'RVS-based synthesizer', 

(see section 5.4.1) is configured to render the background (when available) over the foreground 

(negative depthParameter). Figure 6 illustrates this synthesis step: the left image shows synthesis 

with a positive depthParameter where foreground is rendered over background. The middle image 

shows synthesis with a negative depthParameter where the background is rendered over the 

foreground. It de-occludes the background region 'A' that is visible from the source views. 

¶ Some pixels of the synthesized background view have no correspondence in the source views, hence 

their depth values are set to 0. Those pixels are inpainted in a later process. As an intermediate step, 

remaining foreground pixels are identified and removed as follows: 

¶ The synthesized depth frame, represented by normalized disparities, is filtered using a 

box blur with a configurable kernel size. This blurred depth frame is used for comparing 

with the actual synthesized depth frame. Depth values that are closer indicate relative 

foreground and depth values that are farther, indicate relative background. 

¶ The relative foreground pixels are identified by comparison with some configurable 

threshold. They identify the remaining foreground pixels that occlude the background. 

Their depth values are set to zero which yields a mask of missing background pixels. 

These are indicated by region 'B' in the right image of Figure 6. 

¶ The masked texture and depth data are inpainted from neighboring areas. The push-pull inpainter is 

used for this purpose. 

 

The inpainted background view (identified by a boolean flag) is used for filling missing pixels at the 

decoder side. This filling process is applied at the patch level or at the view level. 
 

 
Figure 6: Steps in finding an inpaint mask for synthesizing an inpainted background view  

The push-pull inpainter is similar to the method that is used to pad texture patches in V-PCC [12]. The 

input resolution for the push-pull inpainter is the resolution of the above-described background view that 

can be lower than the source views. 

 



 

 

1. Push: starting from the input resolution, the resolution is repeatedly halved (rounding up) with 

linear interpolation of texture and depth (with border repeat), until the top of the pyramid is an 

image of 1 × 1 pixel. 

2. Pull: starting with the second-smallest image, when depth is larger than zero, the texture and 

depth is preserved. Otherwise, texture and depth are averaged over the neighboring samples of 

the higher layer (with border repeat) that have non-zero depth. When none such samples exist, 

the zero depth is maintained. 

3. The output of the algorithm is the filtered frame at input resolution. 

4.2.3 View labeling 

The view labeling is split in two independent parts: view selection (§4.2.3.1) and basic view allocation 

(§4.2.3.2). 

4.2.3.1 Two operating modes for view selection 

The view labeler receives source view parameters for all source views (Figure 1) and based on that each 

source view is labeled as basic or additional (§4.2.3.2). There are two modes for view selection, which 

allows to study the benefit of supplementing complete views with patches. 

In the first mode, all source views are output, and they are labeled as basic or additional views (Figure 

7). The encoding result is one or more atlases with complete views and patches taken from the additional 

views. 

 
Figure 7: View selection behavior of the view labeler when  additional views are enabled  

In the second mode, only basic views are output (Figure 8). The encoding result is one or more atlases 

with only complete views. 

 
Figure 8: View selection behavior of the view labeler when additional views are not enabled  

4.2.3.2 Basic view allocation 

The labeling of basic views consists of the following steps: 

1. Determine the number of basic views (hence ñallocationò), 

2. Prepare cost calculation, 

3. Select initial basic views, 

4. Update the view labels. 

View labeler 

v1, basic 
v2, additional 
v3, basic 
v4, additional 
v5, additional 
v6, basic 

v1 
v2 
v3 
v4 
v5 
v6 

View labeler 

v1, basic 
 
v3, basic 
 
 
v6, basic 

v1 
v2 
v3 
v4 
v5 
v6 



 

 

The inpainted view is labeled 'additional'. 

4.2.3.2.1 Determine the number of basic views 

In the data processing flow of the test model, the atlas frame size calculation (§4.2.6) is performed after 

view labeling2. Part of the atlas frame size calculation logic is repeated to estimate how many basic 

views there could be within pixel rate constraints: 

1. The number of encoded atlases is assumed to be equal to the configured maximum number of 

atlases divided by the configured number of groups. 

2. The maximum allowed number of atlas samples that is available to the encoder is the product of 

the number of encoded atlases and the configured maximum number of samples per atlas (M). 

Note that the number of samples per atlas corresponds to the luma picture size of the texture 

attribute video data. 

3. The maximum number of atlas samples that all basic views together may use (N) is a configurable 

fraction of the total allowance. For instance, when this fraction is 50% and there are two atlases, 

then all basic views will fit in the first atlas. 

4. The number of basic views is determined by iterating over source views in order of decreasing 

sample count per source view. While iterating, the total number of samples is counted as well as 

the number of samples in the first atlas. When there are K atlases, the first, 1 + Kôth, 1 + 2Kôth, 

etc. source views are assigned to the first atlas. The number of basic views corresponds to the 

largest number of source views that still fit in terms of the maximum number of samples N and 

the maximum number of samples per atlas M.  

Assumptions are: 

1. The number of basic views is constrained by the number of atlases (per group) and the luma 

picture size, but not by the sample rate. 

2. The size and aspect ratio of the source views is such that they can be packed efficiently. (It is 

sufficient to count samples, instead of performing trail packings.) 

Finally, the number of basic views is limited to ensure that some source views are either pruned or non-

coded. This allows to preserve meaningful objective evaluation on source view positions. 

4.2.3.2.2 Prepare cost calculation 

The basic view allocation is based on the partitioning around medoids (PAM) algorithm (k-medoids3) 

with basic views as k medoids among n source views but modified to use a repulsion/attraction cost 

function. 

The cost function requires a distance metric on source views. While a previous view labeling method in 

TMIV 5 [WG11N19213] used viewport overlap as a measure of source view similarity, the current view 

 

2 Reordering of the data processing flow is a subject of study in MIV CE-2.8 [WG11N19486] 
3 https://en.wikipedia.org/wiki/K-medoids  

https://en.wikipedia.org/wiki/K-medoids


 

 

labeler only uses the position of each source view to discriminate source views. The distance matrix is 

thus: 

Ὑ ὶȟ  

whereby ὶȟ is the squared distance [m2] between the source view positions.  

The idea of the repulsion/attraction (Figure 9) is that the full configuration of source views is considered. 

The repulsion of medoids is always stronger than the attraction of medoids to source views: when there 

is only one medoid the cost is based only on attraction, and when there are multiple medoids, the cost is 

based only on repulsion. This avoids a parameter to balance the ñforcesò. 

 
Figure 9: Repulsion of medoids v2 and v3 and v14 (left) and attraction of medoid v3 to non -medoids (right)  for 

ClassroomVideo content  

For medoids ὧȣὧ , the repulsion cost is: 

ὐ ς ὶȟ
  
 

 

For medoid c, the (negative) attraction cost is: 

ὐ ὶȟ
ȟ  

 

4.2.3.2.3 Select initial basic views 

Some of the source view configurations (especially CG) exhibit symmetry, resulting in multiple 

solutions with equal cost. To avoid arbitrary selection (undefined behavior) or selection based on multi-

view calibration artefacts, pseudo-random initialization is avoided, and instead the initial medoid is 

selected as the source view that is closest to the following scene position (Figure 10): 

1. Maximum x value over all source view positions (tangent x-plane), 

2. Average y value over all source view positions, 

3. Average z value over all source view positions. 

The assumption is made that +x is the forward direction, which is the OMAF convention (cf. Annex 

B.1). Subsequent medoids (if any) are selected one-by-one by adding the medoid that minimizes the 

repulsion cost. 



 

 

 
Figure 10: Initial basic view selection  

4.2.3.2.4 Update the view labels 

At each iteration, all possible swaps between a medoid (basic view) and non-medoid (additional view) 

are evaluated. The swap that achieves the largest cost reduction is executed. Iteration stops when cost 

reduction is no longer possible. 

4.2.4 Automatic parameter selection 

Some of the parameters of the TMIV encoder are automatically calculated based on the camera 

configuration or at most the first frame of the source views. This section describes these processes. 

4.2.5 Geometry quality assessment 

The quality of the geometry (if present) is assessed automatically based on the first frame of the geometry 

component. Each input view is reprojected to the position of all remaining input views. Then, for every 

reprojected pixel it is checked if reprojected geometry value is higher than a threshold of geometry value 

of collocated pixel or any of its neighbors in the target view (in a 3×3 neighborhood). If this condition 

is not fulfilled, the pixel is counted as inconsistent. If the number of inconsistent pixels between any pair 

of input views is higher than a threshold the quality of the geometry is supposed to be low. 

4.2.6 Atlas frame size calculation 

In V3C, each atlas has a frame size to which all components (atlas data, occupancy video data, geometry 

video data, and attribute video data) are scaled up as part of the reconstruction. The block to patch map 

is scaled down by the block size with patch positions and sizes aligned by this amount. In MIV, the 

attribute video data is always at nominal resolution, the geometry video data (if present) is scaled down 

by an integer factor N Ó 1, and the occupancy video data (if present) is scaled down (usually to the block 

to patch mapôs resolution unless specified in the configuration file). 

The encoder calculates the number of atlases per group and atlas frame size automatically. This 

computation is related to constraints on the maximum size of a picture (considering the luma only), the 

maximum sample rate (in Hz) of the luma, and a total number of allowed decoder instantiations. 

x = xmax 

y = yavg 

target 
initial 

medoid 

subsequent 

medoid 



 

 

Taking into account the MIV restrictions, and assuming there is one attribute, geometry is present, 

occupancy is embedded in geometry, and no frame packing, the following applies: 

¶ number of atlases = number of atlases per group Ā number of groups, 

¶ luma picture size = atlas frame width Ā atlas frame height, 

¶ luma sample rate = (1 + 1/N2) luma picture size Ā frame rate Ā number of atlases, 

¶ number of decoder instantiations = 2 Ā number of atlases. 

To meet the constraints, the following algorithm is applied: 

1. The atlas frame width is set to the widest source view, 

2. The number of atlases per group is set high enough to reach or exceed the maximum luma sample 

rate, but within the maximum number of atlases, 

3. The atlas frame height is set as large as possible within the constraints. 

The calculations are aligned on the block size. 

Without those constraints, there is one atlas per source view and the nominal atlas resolution of each 

atlas is set equal to the resolution of the corresponding source view. This enables complete 

(unconstrained) transmission of all source views. 

4.2.7 Separation into entity layers 

TMIV has the ability to operate in entity coding mode when entity maps are provided for the source 

views. In this mode, the patches extracted and packed within the atlases have active pixels that belong 

to a single entity per patch, thus it is possible to tag each patch with its associated entity ID. This enables 

selective encoding and/or decoding of entities separately if desired resulting in savings in utilized 

bandwidth and improved quality. If entity coding mode is chosen, then the source views (attribute and 

geometry components) including the basic ones are sliced into multiple layers such that each layer 

includes content belong to one entity at a time. Then following encoding stages are invoked for each 

entity independently such that the layers across all views that belong to the same entity are pruned, 

aggregated, and clustered together. The packing combines patches of all entities together in one set of 

atlases. 

4.3 Atlas construction 

4.3.1 Pixel pruning 

A multiview representation of a scene inherently has interview redundancy. The pruner selects which 

areas of the views may be safely pruned. The pruner operates on a per-frame basis, receiving multiple 

views with attribute and geometry components and camera parameters, and outputting masks per view 

and frame of the same size. For additional views, mask values are either 'pruned' or 'preserved'. For basic 

views, all pixels are 'preserved'. 

The method has been devised with the following goals in mind: 

¶ Remove redundancy between all pairs of views, 



 

 

¶ Prefer fewer larger patches, 

¶ Maintain a realistic complexity, 

¶ Consider temporal consistency. 

4.3.1.1 Pruning graph 

In order to determine interview redundancy, the pruner performs data projection between input views. 

To achieve the first two goals, the pruner creates a pruning graph, which defines hierarchy of view 

pruning (Figure 11). The pruning graph is created in a greedy fashion, which allows to achieve the third 

goal. 

 

Figure 11: Pruning graph for one basic and three additional views. Basic view is assigned to a root node (node id: 
N0), each additional view is assigned to a node N i, which is a child node of all nodes N j where j < i  

Pruning graph creation: 

1. Insert basic views into the pruning graph (as root nodes).  

2. Project all pixels of all basic views to each additional view. 

3. Create the pruning mask for each additional view (cf. section 4.3.1.3). 

4. Select the additional view with maximum number of preserved pixels (to prefer larger patches). 

5. Insert selected additional view into the pruning graph (as a child node of all nodes already in 

graph) and stop if all the views are assigned to nodes in the pruning graph. 

6. Project all preserved pixels of selected view to remaining additional views. 

7. Update the pruning mask for each remaining additional view. 

8. Go to 4. 

The temporal consistency is maintained due to the preservation of the view hierarchy over time. The 

pruning graph can change only if view parameter list changes (only at the first frame in the current test 

model). 

The pruning graph is transmitted as part of the view parameters. 




































































