

 ISO/IEC JTC 1/SC 29/WG 4 N0112

Document type: Output document

Title: Test Model 10 for MPEG Immersive Video

Status: Approved

Date of document: 2021-07-23

Source: ISO/IEC JTC 1/SC 29/WG 4

Expected action: None

Action due date: None

 No. of pages: 53

Email of Convenor: yul@zju.edu.cn

Committee URL: https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg4

ISO/IEC JTC 1/SC 29/WG 4

MPEG Video Coding

Convenorship: CN

https://isotc.iso.org/livelink/livelink/open/jtc1sc29wg4

Editorsô integration notes

TMIV 10 ï N0112

¶ m57419: Piecewise linear scaling of geometry atlas

TMIV 9 ï N0084

¶ m56827: Frame packing

TMIV 8 ï N0050

¶ m55709: New proposed MPI format for MIV

¶ m55736: Server-side inpainting

TMIV 7 ï N0005:

¶ m54874: Geometry absent

¶ m54891: Second-pass pruner

¶ m54892: Color-based patch analysis

¶ m54491/m55343: Frame packing

¶ m54893: Adaptive texture-based pruning

¶ m54894: Color-correction

¶ m55089: MPI coding

TMIV 6 ï WG11 N19483:

¶ WG11 m53042: Views enabled per atlas

¶ WG11 m53348: Decoded atlas data hash SEI message

¶ WG11 m54145: Basic views allocation

¶ WG11 m54152: Occupancy coding

¶ WG11 m54176: Geometry scaling

¶ WG11 m54177: Texture pruning

¶ WG11 m54362: V3C_CAD

¶ WG11 m54391: Patch merging

¶ WG11 m54417: Patches with constant depth

¶ WG11 m54489: PTL decoder instantiations constraint

¶ WG11 m54491: Packed independent regions SEI message

¶ WG11 m54754: Basic views allocation and pruner modifications

TMIV 5 ï WG11 N19213:

¶ WG11 m52953: Restructuring of this document

¶ WG11 m52994: Proposed simplifications of MIV

¶ WG11 m53506: HEVC Multiplexing

¶ WG11 m53701: Additional patch dilation in temporal patch redundancy removal

TMIV 4 ï WG11 N19002:

¶ WG11 m51604: Spatio-temporal patch redundancy removal

¶ WG11 m52320: Culling for viewport rendering

¶ WG11 m52350: MIV HLS bitstream codec

¶ WG11 m52365: Depth-map scaling

¶ WG11 m52413: Synthesizer

¶ WG11 m52414: Graph-based pruning

¶ WG11 m52475: Object-based implementation

TMIV 3 ï WG11 N18795:

¶ WG11 m49958: Grouping

¶ WG11 m49962: Pruning

¶ WG11 m50949: Object-based immersive coding

¶ WG11 m51439: Depth occupancy coding

¶ WG11 m51487: Viewing space

TMIV 2 ï WG11 N18577:

¶ No tool adoption

¶ Inclusion of operating modes

TMIV 1 ï WG11 N18470:

¶ Document established based on CfP responses reviewed during MPEG 126th meeting

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMA LISATION

ISO/IEC JTC 1/SC 29/WG 4, MPEG VIDEO CODING

ISO/IEC JTC 1/SC 29/WG 04 N 0112
July 2021, Online

Title Test Model 10 for MPEG Immersive Video

Source WG 4, MPEG Video Coding

Status Approved

Serial number 20596

Editors Basel Salahieh, Joel Jung, Adrian Dziembowski

Abstract

The Video working group has established the Final Draft International Standard (FDIS) and the 10th test

model for MPEG Immersive Video during the 135th MPEG meeting (July 2021) after evaluating the

core experiment results and related contributions. The test model consists of this document and the

reference software, providing an encoder and decoder/renderer in alignment with the specification. This

document serves as a source of general tutorial information on the MPEG Immersive Video (MIV)

design. It defines terminology used, process and data flow, operating modes, and description of

algorithmic components adopted by the video group for the test model.

1. Introduction

The MPEG-I project (ISO/IEC 23090) on coded representation of immersive media includes Part 2

Omnidirectional MediA Format (OMAF) version 1 published in 2018 that supports 3 Degrees of

Freedom (3DoF), where a userôs position is static, but its head can yaw, pitch and roll. However,

rendering flat 360° video, i.e., supporting head rotations only, may generate visual discomfort especially

when objects close to the viewer are rendered. 6DoF enables translation movements in horizontal,

vertical, and depth directions in addition to 3DoF orientations. The translation support enables

interactive motion parallax providing viewers with natural cues to their visual system and resulting in

an enhanced perception of volume around them. At the 125th MPEG meeting, a call for proposals [1]

was issued to enable head-scale movements within a limited space. This has resulted in the new part

ISO/IEC 23090-12 Immersive Video (MIV).

At the 129th MPEG meeting the fourth working draft of MIV has been realigned to use ISO/IEC 23090-

5 Video-based Point Cloud Compression (V-PCC) as a normative reference for terms, definitions,

syntax, semantics and decoding processes. At the 130th MPEG meeting this alignment has been

completed by restructuring Part 5 in a common specification Visual Volumetric Video-based Coding

(V3C) and annex H Video-based Point Cloud Compression (V-PCC). V3C provides extension

mechanisms for V-PCC and MIV. The terminology in this document reflects that of V3C and MIV.

2. Scope

The normative decoding process for MPEG Immersive Video (MIV) is specified in the Final Draft

International Standard of MPEG Immersive Video (FDIS) [2]. The TMIV reference software (Annex

A) provides a reference implementation of non-normative encoding and rendering techniques and the

normative decoding process for the MIV standard.

This document provides an algorithmic description for the TMIV encoder and decoder/renderer. The

purpose of this document is to promote a common understanding of the coding features, in order to

facilitate the assessment of the technical impact of new technologies during the standardization process.

Common Test Conditions for MPEG Immersive Video [3] provides test conditions including TMIV-

based anchors.

3. Terms and definitions

For the purpose of this document, the following definitions apply in addition to the definitions in MIV

specification [2] clause 3.

Table 1: Terminology definitions used for TMIV

Term Definition

Additional view A source view that is to be pruned and packed in multiple

patches.

Basic view A source view that is packed in an atlas as a single patch.

Clustering Combining pixels in a pruning mask to form patches.

Culling Discarding part of a rendering input based on target viewport

visibility tests.

Entity An abstract concept to be defined in another standard. For

example, entities may either represent different physical

objects, or a segmentation of the scene based on aspects such

as reflectance properties, or material definitions.

Entity component A multi-level map indicating the entity of each pixel in a

corresponding view representation.

Entity layer A view representation of which all samples are either part of

a single entity or non-occupied.

Entity separation Extracting an entity layer per a view representation that

includes the desired entity component.

Geometry scaling Scaling of the geometry data prior to encoding and

reconstructing the nominal resolution geometry data at the

decoder side.

Inpainting Filling missing pixels with matching values prior to

outputting a requested target view.

Mask aggregation Combination of pruning masks over a number of frames,

resulting in an aggregated pruning mask.

Metadata merging Combining parameters of encoded atlas groups.

Occupancy scaling Scaling of the occupancy data prior to encoding and

reconstructing the nominal resolution occupancy data at the

decoder side.

Omnidirectional view A view representation that enables rendering according to the

user's viewing orientation, if consumed with a head-mounted

device, or according to user's desired viewport otherwise, as

if the user was in the spot where and when the view was

captured.

Patch packing Placing patches into an atlas without overlap of the occupied

regions, resulting in patch parameters.

Pose trace A navigation path of a virtual camera or an active viewer

navigating the immersive content over time. It sets the view

parameters per frame.

Pruning Measuring the interview redundancy in additional views

resulting in pruning masks.

Pruning mask A mask on a view representation that indicates which pixels

should be preserved. All other pixels may be pruned.

Source splitting Partitioning views into multiple spatial groups to produce

separable atlases.

Source view Indicates source video material before encoding that

corresponds to the format of a view representation, which

may have been acquired by capture of a 3D scene by a real

camera or by projection by a virtual camera onto a surface

using source view parameters.

Target view Indicates either perspective viewport or omnidirectional view

at the desired viewing position and orientation.

View labeling Classifying the source views as basic views or additional

views.

4. Description of encoder processes

4.1 Introduction

4.1.1 High-level description

The TMIV encoder has a ñgroup-basedò encoder, described in Figure 1, at higher level which invokes

for each group a ñsingle-groupò encoder described in Figure 2. The group-based encoder has the

following stages:

¶ Preparation of source material by:

¶ Assessing the geometry (depth map) quality, if present, for each source view.

¶ Splitting source views in groups.

¶ Synthesizing an inpainted background view covering the whole field of view of the source

views within each group.

¶ Labeling source views as basic view or additional view.

¶ Encoding of each group separately (using the associated subset of split source views).

¶ Formatting of the bitstream (includes a merging substage to combine sub bitstreams of same type

produced by each single-group encoder together) which is V3C sample stream with MIV

extensions and related SEI messages.

¶ If packed video is enabled, then geometry video data (GVD), attribute video data (AVD), and

occupancy video data (OVD) can be combined into packed video data (PVD) per atlas.

¶ Encoding video sub bitstreams based on their presence (i.e., the presence of GVD, AVD, OVD

or PVD depends on the encoder configuration):

a. HEVC encoding of video sub bitstreams (each separately) using HM.

b. VVC encoding of video sub bitstreams (each separately) using VVenC.

¶ Multiplexing to combine the formatted bitstream with the video sub bitstream into a single MIV-

compliant bitstream.

Figure 1: Top -level diagram of the TMIV group -based encoder

The single-group encoder acts on the selected source views for a given group and has the following

stages:

1. Automatic parameter selection to set the atlas parameters (i.e., number of atlases, and the frame

size of each of the atlases).

2. Separation of views into entity layers (optional stage).

3. Pruning of redundant information, aggregating the pruned masks over an intra-period. and

clustering of preserved pixels for each group and entity.

4. Packing of patches and generation of video data per group (Figure 3).

5. Quantization and scaling of geometry video data per atlas, if present.

6. Scaling of occupancy video data per atlas, if present.

The remainder of this section explains the encoder input, output, and each of the encoder processes in

more detail.

Figure 2: Top-level diagram of the TMIV single -group encoder

Figure 3: Representing source views using patch atlases

At the 132th MPEG meeting, Multiple Plane Images [10] have been introduced to TMIV supporting an

alternative coding mechanism that uses transparency layers.

4.1.2 Encoder inputs

The input to the TMIV encoder consists of a list of source views (Figure 4). The source views represent

projections of a 3D real or virtual scene. The source views can be in equirectangular, perspective, or

orthographic projection. Each source view should at least have view parameters (camera intrinsics,

camera extrinsics, geometry quantization, etc.). A source view may have a geometry component in the

form of 8-16 bits raw video with range/invalid sample values. Also a source view may have texture

attribute component in the form of YCBCR 4:2:0 10 bits. Additional optional attributes per source view

are an entity map and a transparency attribute component. The set of components has to be the same for

all source views.

Figure 4: Input sourc e views composed of texture attribute and geometry components , and entity maps

4.1.3 Encoder outputs

The output of the TMIV encoder is a single file according to the V3C sample stream format containing

a single V3C sequence. Most parameter sets have MIV extensions enabled, and common atlas data is

present. The view parameter list is sent once, and depth quantization parameters (if present) are updated

at each intra frame. For each of the regular atlases, there are sub bitstreams with patch data, geometry

video data (if present), attribute video data (if present), occupancy video data (if present), and packed

video data (if present). An atlas may be composed of multiple atlas tiles. Atlas and patch parameters

include groups and entity ID's respectively1.

The structure of a V3C bitstream (Figure 5) is as follows:

1 There may be only one group and/or entity in which case group-based and/or entity-based coding is effectively disabled.

¶ The V3C bitstream consists of a V3C unit stream (with carriage out of scope) or a V3C sample

stream which is a simple container for a V3C unit stream.

o At the start of the V3C unit stream, the V3C parameter set (VPS) is available in-band or

out-of-band. The information in the VPS announces the presence of sub bitstreams,

allowing the decoder to initialize sub decoders for all atlas and video sub bitstreams.

o Each subsequent V3C unit has a payload that contains one or more access units of a sub

bitstream. The V3C unit header identifies to which sub bitstream the payload applies.

¶ The geometry video data (GVD), attribute video data (AVD), and occupancy video data (OVD)

V3C units contain video sub bitstreams for a specific atlas component. While the standard is

video codec agnostic, for the test model the video sub bitstreams are always HEVC Annex B

streams.

¶ TMIV also supports packed video data (PVD) V3C units that packs various video data types of

multiple atlas tiles (per atlas) together.

¶ The atlas data (AD) V3C unit contains an atlas sub bitstream which is also a network abstraction

layer (NAL) unit stream, but instead of video frames there is a NAL unit called atlas tile layer

(ATL) that carries a list of patch data units (PDU). Each PDU describes the relation between a

patch in an atlas and the same patch in a (hypothetical) source view. The ATL is parameterized

using the atlas sequence parameter set (ASPS), atlas adaptation parameter set (AAPS), and atlas

frame parameter set (AFPS).

¶ The common atlas data (CAD) V3C unit also contains an atlas sub bitstream, but the main NAL

units are the common atlas sequence parameter set (CASPS) and the common atlas frame (CAF)

that contains the view parameter list or updates thereof.

¶ All sub bitstreams may contain SEI messages and both the CASPS MIV extension and ASPS

may contain volumetric usability information (VUI).

Figure 5: Stru cture of the V3C bitstream with MIV extensions.
Some aspects of V3C that are not relevant to MIV have been omitted for clarity

4.2 View preparation

4.2.1 Distribution of source views in groups

Source views can be divided into multiple groups. The grouping helps outputting local coherent

projections of important regions (e.g., belonging to foreground objects or occluded regions) in the atlases

per group as opposed to having fewer samples of those regions when processing all source views as a

single group. An automatic process is implemented to select views per group, based on the view

parameters list and the number of groups to obtain. The source views are being distributed accordingly

in multiple branches, and each group is encoded independently of each other.

Source splitting operates as follows: a views pool including all available source views is formed and the

number of views per group is set (by dividing the number of source views by the number of groups).

The view parameters list is used to identify the range the views are spanning in Cartesian scene

coordinates. The dominant coordinate axis is selected as a basis to set key positions. Key positions are

located at the maximum view positions of the dominant axis across view in the views pool. Distances of

views to these key positions are computed. Based on the number of views for the group, the closest

views to the first key position are selected and removed from the views pool. Then a second key position

is identified, and the process is repeated covering the distribution of all source views across the chosen

number of groups.

4.2.2 Synthesis of inpainted background view

The inpainting module creates synthetic texture and geometry data that is hidden from the source views,

thereby reducing the missing data problem at the decoder-side. It creates an ERP view with inpainted

background data. This view has the following properties:

¶ It is placed in the center of the camera rig, i.e. the mean of the source camera positions.

¶ Its field-of-view is the union of source view field-of-views (with some additional margin set in the

configuration file, by default the margin is set to 30% of combined field-of-view).

¶ Since the quality of the inpainted regions is lower than the original content, the resolution of the

view is typically chosen lower than the resolution of the source views, hereby saving on bitrate and

pixel-rate. This resolution is configurable.

The following steps are taken:

¶ A background view is synthesized from all available source views. The 'RVS-based synthesizer',

(see section 5.4.1) is configured to render the background (when available) over the foreground

(negative depthParameter). Figure 6 illustrates this synthesis step: the left image shows synthesis

with a positive depthParameter where foreground is rendered over background. The middle image

shows synthesis with a negative depthParameter where the background is rendered over the

foreground. It de-occludes the background region 'A' that is visible from the source views.

¶ Some pixels of the synthesized background view have no correspondence in the source views, hence

their depth values are set to 0. Those pixels are inpainted in a later process. As an intermediate step,

remaining foreground pixels are identified and removed as follows:

¶ The synthesized depth frame, represented by normalized disparities, is filtered using a

box blur with a configurable kernel size. This blurred depth frame is used for comparing

with the actual synthesized depth frame. Depth values that are closer indicate relative

foreground and depth values that are farther, indicate relative background.

¶ The relative foreground pixels are identified by comparison with some configurable

threshold. They identify the remaining foreground pixels that occlude the background.

Their depth values are set to zero which yields a mask of missing background pixels.

These are indicated by region 'B' in the right image of Figure 6.

¶ The masked texture and depth data are inpainted from neighboring areas. The push-pull inpainter is

used for this purpose.

The inpainted background view (identified by a boolean flag) is used for filling missing pixels at the

decoder side. This filling process is applied at the patch level or at the view level.

Figure 6: Steps in finding an inpaint mask for synthesizing an inpainted background view

The push-pull inpainter is similar to the method that is used to pad texture patches in V-PCC [12]. The

input resolution for the push-pull inpainter is the resolution of the above-described background view that

can be lower than the source views.

1. Push: starting from the input resolution, the resolution is repeatedly halved (rounding up) with

linear interpolation of texture and depth (with border repeat), until the top of the pyramid is an

image of 1 × 1 pixel.

2. Pull: starting with the second-smallest image, when depth is larger than zero, the texture and

depth is preserved. Otherwise, texture and depth are averaged over the neighboring samples of

the higher layer (with border repeat) that have non-zero depth. When none such samples exist,

the zero depth is maintained.

3. The output of the algorithm is the filtered frame at input resolution.

4.2.3 View labeling

The view labeling is split in two independent parts: view selection (§4.2.3.1) and basic view allocation

(§4.2.3.2).

4.2.3.1 Two operating modes for view selection

The view labeler receives source view parameters for all source views (Figure 1) and based on that each

source view is labeled as basic or additional (§4.2.3.2). There are two modes for view selection, which

allows to study the benefit of supplementing complete views with patches.

In the first mode, all source views are output, and they are labeled as basic or additional views (Figure

7). The encoding result is one or more atlases with complete views and patches taken from the additional

views.

Figure 7: View selection behavior of the view labeler when additional views are enabled

In the second mode, only basic views are output (Figure 8). The encoding result is one or more atlases

with only complete views.

Figure 8: View selection behavior of the view labeler when additional views are not enabled

4.2.3.2 Basic view allocation

The labeling of basic views consists of the following steps:

1. Determine the number of basic views (hence ñallocationò),

2. Prepare cost calculation,

3. Select initial basic views,

4. Update the view labels.

View labeler

v1, basic
v2, additional
v3, basic
v4, additional
v5, additional
v6, basic

v1
v2
v3
v4
v5
v6

View labeler

v1, basic

v3, basic

v6, basic

v1
v2
v3
v4
v5
v6

The inpainted view is labeled 'additional'.

4.2.3.2.1 Determine the number of basic views

In the data processing flow of the test model, the atlas frame size calculation (§4.2.6) is performed after

view labeling2. Part of the atlas frame size calculation logic is repeated to estimate how many basic

views there could be within pixel rate constraints:

1. The number of encoded atlases is assumed to be equal to the configured maximum number of

atlases divided by the configured number of groups.

2. The maximum allowed number of atlas samples that is available to the encoder is the product of

the number of encoded atlases and the configured maximum number of samples per atlas (M).

Note that the number of samples per atlas corresponds to the luma picture size of the texture

attribute video data.

3. The maximum number of atlas samples that all basic views together may use (N) is a configurable

fraction of the total allowance. For instance, when this fraction is 50% and there are two atlases,

then all basic views will fit in the first atlas.

4. The number of basic views is determined by iterating over source views in order of decreasing

sample count per source view. While iterating, the total number of samples is counted as well as

the number of samples in the first atlas. When there are K atlases, the first, 1 + Kôth, 1 + 2Kôth,

etc. source views are assigned to the first atlas. The number of basic views corresponds to the

largest number of source views that still fit in terms of the maximum number of samples N and

the maximum number of samples per atlas M.

Assumptions are:

1. The number of basic views is constrained by the number of atlases (per group) and the luma

picture size, but not by the sample rate.

2. The size and aspect ratio of the source views is such that they can be packed efficiently. (It is

sufficient to count samples, instead of performing trail packings.)

Finally, the number of basic views is limited to ensure that some source views are either pruned or non-

coded. This allows to preserve meaningful objective evaluation on source view positions.

4.2.3.2.2 Prepare cost calculation

The basic view allocation is based on the partitioning around medoids (PAM) algorithm (k-medoids3)

with basic views as k medoids among n source views but modified to use a repulsion/attraction cost

function.

The cost function requires a distance metric on source views. While a previous view labeling method in

TMIV 5 [WG11N19213] used viewport overlap as a measure of source view similarity, the current view

2 Reordering of the data processing flow is a subject of study in MIV CE-2.8 [WG11N19486]
3 https://en.wikipedia.org/wiki/K-medoids

https://en.wikipedia.org/wiki/K-medoids

labeler only uses the position of each source view to discriminate source views. The distance matrix is

thus:

Ὑ ὶȟ

whereby ὶȟ is the squared distance [m2] between the source view positions.

The idea of the repulsion/attraction (Figure 9) is that the full configuration of source views is considered.

The repulsion of medoids is always stronger than the attraction of medoids to source views: when there

is only one medoid the cost is based only on attraction, and when there are multiple medoids, the cost is

based only on repulsion. This avoids a parameter to balance the ñforcesò.

Figure 9: Repulsion of medoids v2 and v3 and v14 (left) and attraction of medoid v3 to non -medoids (right) for

ClassroomVideo content

For medoids ὧȣὧ , the repulsion cost is:

ὐ ς ὶȟ

For medoid c, the (negative) attraction cost is:

ὐ ὶȟ
ȟ

4.2.3.2.3 Select initial basic views

Some of the source view configurations (especially CG) exhibit symmetry, resulting in multiple

solutions with equal cost. To avoid arbitrary selection (undefined behavior) or selection based on multi-

view calibration artefacts, pseudo-random initialization is avoided, and instead the initial medoid is

selected as the source view that is closest to the following scene position (Figure 10):

1. Maximum x value over all source view positions (tangent x-plane),

2. Average y value over all source view positions,

3. Average z value over all source view positions.

The assumption is made that +x is the forward direction, which is the OMAF convention (cf. Annex

B.1). Subsequent medoids (if any) are selected one-by-one by adding the medoid that minimizes the

repulsion cost.

Figure 10: Initial basic view selection

4.2.3.2.4 Update the view labels

At each iteration, all possible swaps between a medoid (basic view) and non-medoid (additional view)

are evaluated. The swap that achieves the largest cost reduction is executed. Iteration stops when cost

reduction is no longer possible.

4.2.4 Automatic parameter selection

Some of the parameters of the TMIV encoder are automatically calculated based on the camera

configuration or at most the first frame of the source views. This section describes these processes.

4.2.5 Geometry quality assessment

The quality of the geometry (if present) is assessed automatically based on the first frame of the geometry

component. Each input view is reprojected to the position of all remaining input views. Then, for every

reprojected pixel it is checked if reprojected geometry value is higher than a threshold of geometry value

of collocated pixel or any of its neighbors in the target view (in a 3×3 neighborhood). If this condition

is not fulfilled, the pixel is counted as inconsistent. If the number of inconsistent pixels between any pair

of input views is higher than a threshold the quality of the geometry is supposed to be low.

4.2.6 Atlas frame size calculation

In V3C, each atlas has a frame size to which all components (atlas data, occupancy video data, geometry

video data, and attribute video data) are scaled up as part of the reconstruction. The block to patch map

is scaled down by the block size with patch positions and sizes aligned by this amount. In MIV, the

attribute video data is always at nominal resolution, the geometry video data (if present) is scaled down

by an integer factor N Ó 1, and the occupancy video data (if present) is scaled down (usually to the block

to patch mapôs resolution unless specified in the configuration file).

The encoder calculates the number of atlases per group and atlas frame size automatically. This

computation is related to constraints on the maximum size of a picture (considering the luma only), the

maximum sample rate (in Hz) of the luma, and a total number of allowed decoder instantiations.

x = xmax

y = yavg

target
initial

medoid

subsequent

medoid

Taking into account the MIV restrictions, and assuming there is one attribute, geometry is present,

occupancy is embedded in geometry, and no frame packing, the following applies:

¶ number of atlases = number of atlases per group Ā number of groups,

¶ luma picture size = atlas frame width Ā atlas frame height,

¶ luma sample rate = (1 + 1/N2) luma picture size Ā frame rate Ā number of atlases,

¶ number of decoder instantiations = 2 Ā number of atlases.

To meet the constraints, the following algorithm is applied:

1. The atlas frame width is set to the widest source view,

2. The number of atlases per group is set high enough to reach or exceed the maximum luma sample

rate, but within the maximum number of atlases,

3. The atlas frame height is set as large as possible within the constraints.

The calculations are aligned on the block size.

Without those constraints, there is one atlas per source view and the nominal atlas resolution of each

atlas is set equal to the resolution of the corresponding source view. This enables complete

(unconstrained) transmission of all source views.

4.2.7 Separation into entity layers

TMIV has the ability to operate in entity coding mode when entity maps are provided for the source

views. In this mode, the patches extracted and packed within the atlases have active pixels that belong

to a single entity per patch, thus it is possible to tag each patch with its associated entity ID. This enables

selective encoding and/or decoding of entities separately if desired resulting in savings in utilized

bandwidth and improved quality. If entity coding mode is chosen, then the source views (attribute and

geometry components) including the basic ones are sliced into multiple layers such that each layer

includes content belong to one entity at a time. Then following encoding stages are invoked for each

entity independently such that the layers across all views that belong to the same entity are pruned,

aggregated, and clustered together. The packing combines patches of all entities together in one set of

atlases.

4.3 Atlas construction

4.3.1 Pixel pruning

A multiview representation of a scene inherently has interview redundancy. The pruner selects which

areas of the views may be safely pruned. The pruner operates on a per-frame basis, receiving multiple

views with attribute and geometry components and camera parameters, and outputting masks per view

and frame of the same size. For additional views, mask values are either 'pruned' or 'preserved'. For basic

views, all pixels are 'preserved'.

The method has been devised with the following goals in mind:

¶ Remove redundancy between all pairs of views,

¶ Prefer fewer larger patches,

¶ Maintain a realistic complexity,

¶ Consider temporal consistency.

4.3.1.1 Pruning graph

In order to determine interview redundancy, the pruner performs data projection between input views.

To achieve the first two goals, the pruner creates a pruning graph, which defines hierarchy of view

pruning (Figure 11). The pruning graph is created in a greedy fashion, which allows to achieve the third

goal.

Figure 11: Pruning graph for one basic and three additional views. Basic view is assigned to a root node (node id:
N0), each additional view is assigned to a node N i, which is a child node of all nodes N j where j < i

Pruning graph creation:

1. Insert basic views into the pruning graph (as root nodes).

2. Project all pixels of all basic views to each additional view.

3. Create the pruning mask for each additional view (cf. section 4.3.1.3).

4. Select the additional view with maximum number of preserved pixels (to prefer larger patches).

5. Insert selected additional view into the pruning graph (as a child node of all nodes already in

graph) and stop if all the views are assigned to nodes in the pruning graph.

6. Project all preserved pixels of selected view to remaining additional views.

7. Update the pruning mask for each remaining additional view.

8. Go to 4.

The temporal consistency is maintained due to the preservation of the view hierarchy over time. The

pruning graph can change only if view parameter list changes (only at the first frame in the current test

model).

The pruning graph is transmitted as part of the view parameters.

