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Abstract— The paper  presents a fast and effective method 

of modeling a nonuniform and dispersive interconnect by 
means of S-parameters. The paper presents an approach based 
on the method of successive approximations, but taking into 
account the dependence on the frequency of line parameters. 
The concept is to use a rational approximation of the per-unit-
length parameter of the line calculated for each frequency. An 
example of the Bessel dispersive transmission line has been 
considered. 
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I. INTRODUCTION  

Modeling of transmission lines in the time-domain is an 
ongoing challenge for the people involved in the simulation of 
integrated circuits and/or printed circuit boards at high 
frequency. The literature on this subject is very rich and can be 
found e.g. in [2,3,4]. Among many methods and approaches we 
would like to focus on two, which include further  references. 
In the first paper [2], the author presents an approach based on 
dyadic Green’s function and vector fitting of per-unit-length 
impedance and admittance of transmission line to obtain a Z 
matrix of transmission line as a two-port. The line impedance 
and admittance are the sums of rational functions of complex 
frequency s, which facilitates the transformation to the time-
domain and modeling in SPICE. The biggest problem is the 
necessity to take into account a large number of terms in every 
entry of the mentioned Z matrix. In [3], the same author has 
extended the above approach to weakly nonuniform 
transmission lines. In that case the author used results obtained 
for uniform case and parametric macromodeling to obtain the 
approximate Z matrix of the line. In both papers, the presented 
approach has been extended to the case of a multiconductor 
line. On the other hand in paper [4], a method was developed to 
convert of differential telegrapher’s equations into integral 
equations and next to solve them using the method of 
successive approximation. In that approach, we obtain a first 
order approximation of the solution in a simple analytical form 
which is valid for low loss transmission lines. The drawback of 
that approach was not including the skin effect and dielectric 
dispersion.  

 This paper presents an improved version of the 
approach based on the method of successive approximations 
[4], taking into account the line parameter dependence on the 

frequency and longitudinal coordinate. For this purpose, as in 
[2,3], we use the concept of rational approximation of per-
unit-length parameters of the line in the frequency domain. 
Our approach is based on scattering parameters of the 
transmission line. Such parameters for both frequency and 
time domains was obtained in [1] for a multiconductor but 
only uniform line. In this paper, we extended this approach to 
the case of a nonuniform, frequency-dependent single 
transmission line. 

 The paper is organized as follows. The next section 
presents the integral equations approach to the dispersive 
transmission line. In the third section, we employ the method 
of successive approximation to calculate the scattering 
parameters of a nonuniform transmission line. In the fourth 
section we present, the calculations for the Bessel frequency 
dependent transmission line. We conclude in the last section. 

II.TELGRAPHER’S EQUATIONS IN INTEGRAL FORM 

A. Telegrapher’s equations for a dispersive nonuniform 

transmission line 

The equations for a nonuniform, dispersive transmission 
line are the following: 

 
       

   
                , 

 
       

   
               , 

(1) 

where  

                                   

                      

       
  

 

   
 
 

 

  

   

       
  

 

   
 
 

  

   

 

 

                
d-length of the line 
r(z), g(z)- transmission line taper. 

 

  
In (1) Z1 and Y1 have rational form of per-unit-length 

impedance and admittance of the transmission line obtained as 
in [2] by means of the vector fitting technique [5]. The next step 
is introducing current waves instead of voltage and current into 
the transmission line equations (1). It is done, similarly as in [4], 
by transformations:  
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(2) 

Using transformation (2) we can pass to (3): 
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Equations (3), after differentiation and simple algebraic 

operations, take the following scalar form: 
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where: 
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We simplify equations (4) by removing diagonal terms in (4) 
in the following way:   

 
 

  
                                        

 

  
                                         

 

(5) 

where: 

                    
 

 

  

B. Integral equations for dispersive nonuniform  transmission 

line 

Integrating the first of equations (5) from z to z2 and the 
second one from z1 to z, after simple but tedious manipulations 
we obtain the integral equations of the nonuniform dispersive 
transmission line: 
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(6b) 
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The solutions of equations (6) have the following operator series 

form [4]: 
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where: 

                  

  

 

                 

                            
 

  

       

 

III.SCATTERING PARAMETERS FOR DISPERSIVE NONUNIFORM  

TRANSMISSION LINE  

A. Scattering parameters  for dispersive nonuniform  

transmission line 

 Now we substitute in equation (6a)      and in (6b) 
    . As a result, we arrive at two-port equations of the 
transmission line expressed by current waves and scattering 
parameters in the following form: 
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where: 
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(9) 

 
The scattering parameters have the form of infinite series 

(9). Each term in these three series (9) is the integral of its 
predecessor. The integration of successive terms in these series 
can be done analytically or for more complex nonuniformities 
numerically.  

B. Convergence of the series equivalent to scattering 

parameters for a  dispersive nonuniform  transmission line 

 Let us consider the first order approximation of the 
series (9). It means that we take terms in (9) for i = 0 only. Then 
we obtain relationships: 
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Equations (10) are valuable results if the series (9) are 
rapidly converging. It can be shown that series (9) are no less 
rapidly convergent than the following two series: 
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From estimates (11), it appears that the convergence of the 

series (9) is determined by the ratios       
   

     
   and 

      
      , which are usually less than an one. This shows 

that the first order approximation of scattering parameters (10) 
may, in many cases be sufficient. We will show this in the 
example of the Bessel line. 

IV. SCATTERING PARAMETERS FOR THE BESSEL TRANSMISSION 

LINE  

The PUL parameters of the Bessel transmission line 

are        and       . By substituting the above PUL to 
equations (10) and performing integrations we obtain: 
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(12b) 
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where Ei(1,x) is an exponential integral and q=2/(++2). 
Scattering parameters in the case of the Bessel line can be 
determined analytically. For comparative purposes, scattering 

parameters were calculated for the Bessel line for  = -1 and  = 
1. The exact parameter S11 for this case is : 
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(13) 

where In(z) and Kn(z) are modified Bessel functions of the 
first and second kind respectively. The approximate scattering 
parameters for the Bessel line easily obtained from equations 

(12), where we need to substitute  = -1,  = 1 and q=1.  
 

V.RESULTS 

As an example we have considered a nonuniform 
(Bessel)  interconnect with frequency dependent parameters 
shown in Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1 The considered system  inverter-interconnect-inverter and its 

circuit model. 

The longitudinal parameters of the interconnect Z(), 

Y()  depend on the frequency as follows: 
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where R=10Ω, L= 2nH, G =10S, C=1pF,  s = 4,  =1,  = 
2ns, d=10cm. 

The frequency dependence of the PUL parameters of 

interconnect R(), L(), G(), C() are shown in Fig.2 and 
Fig.3. The above relationships of longitudinal parameters 

Z(),Y() of the interconnect as functions of frequency were 
approximated by means of rational functions using very 
efficient algorithm-vector fitting [5]. Frequency characteristics 

of the modules |S11()|, |So11()| for comparative purposes are 
shown in Fig.4. Moreover we simulated a circuit consisting of 
voltage pulse sources (of the trapezoid shape A=2V, Tr =Tf 

=500ps, Ton=2ns) with source resistance Rs=150Ω and 
transmission line loaded by capacitor CL=1pF (Fig.3).  

 

 
 

 

 

 

 

 

 

 

 

 
Fig.2 A typical frequency dependence of the real part of  

longitudinal impedance (resistance) of the line. 
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Fig.3 Transmission line inductance dependence on frequency.

 
Fig.4 Dependence of scattering parameters: So11- approximate and 

S11-exact of nonuniform (Bessel) transmission line on frequency. 

 

Fig.5 Near end  voltages Vne1(t)-approximate and Vne2(t)-exact 

of the nonuniform (Bessel) transmission line. 

 

The voltages at both ends of the Bessel transmission line 
were obtained based on the approximate (12) and exact (13) 
scattering parameters in the frequency domain and they were 
subsequently transformed (IFFT) to the time domain. The near 
end voltages of the considered system (Fig.1) are shown in 
Fig.5. Visible differences between the exact and approximate 
results occur in a steady state. The same effect can be observed 
in the case of voltages at the end of the line (Fig.6). It can be 
explained by the fact, that during the simulation a finite 
number of terms (first term in our case) contribute to S11, S12, 
S21, S22. For data in example considered by us,  the ratios:    r1 < 
0.6 and , r2 < 0.5 (for frequencies greater than 200MHz) , while 

 
Fig.6 Far end  voltages Vne1(t)-approximate and Vne2(t)-exact 

of the nonuniform (Bessel) transmission line. 

 
calculated in example considered in [2] are r1 < 0.08 and r2 < 
0.012 It means that presented approach can be applied to the 
wider class of nonuniformities than in [2]. 

 

VI.CONCLUSIONS 

We have shown that it is possible to generalize the 
approach based on the method of successive approximation for 
the case of a nonuniform transmission line with frequency 
dependent parameters. As a result, we obtain a closed form ( 
meaning a first order approximation) of scattering parameters 
of nonuniform transmission line in frequency domain. In the 
case of a transmission line with r1<<1 and r2<<1, an 
approximation is satisfactory. Equations (10) allow us to 
determine the approximate scattering parameters for 
nonuniform lines by integrating analytically (such as in the 
case of the Bessel lines) or numerically and applying the 
approximation by rational functions using a vector fitting 
algorithm. Compared with the approach based on dyadic 
Green's function and parametric macromodeling applied to 
weakly nonuniform transmission lines [2,3] the presented 
approach is simpler. The presented approach permits the 
implementation of the model in the SPICE program.  
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