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Abstract—The paper describes a technique allowing to con-
ceal or mitigate long gaps (up to 0.5 second) in music pro-
grams. Missing content is replaced by signal synthesized from 
spectral models using data surrounding the gap. Tonal compo-
nents are synthesized using a sinusoidal model. A heuristic 
adaptive algorithm is employed to link model parameters 
across the gap. Prior to linking, sinusoidal partials are catego-
rized as stable or variable, allowing to properly dealing with 
vibrato or glissando notes in music. The noise part is synthe-
sized using a warped LPC model. Results of blind listening 
tests are reported.  

I.  INTRODUCTION 

Long gaps may occur by a transmission or storage of 
digital audio due to lost data packets, lost synchronization or 
physical damages of the storage medium. Also, a signal 
level overload during a music recording session usually 
leads to severely distorted data. These segments of damaged 
signal may be as long as tens or even hundreds of millisec-
onds (thousands of samples) and are very disturbing for the 
listener [1,2]. In general, reconstruction of such missing 
data through interpolation on a waveform level is an unreal-
istic challenge. Luckily, human perception of sounds relies 
mainly on the modulations carried by audio waveforms. 
Hence, for the gap to remain unnoticeable, perceptual signal 
properties should be reconstructed rather than the exact 
waveform. However, even this goal is quite elusive due to 
the fundamental non-stationarity of audio signals such as 
speech or music. The longer the gap the more of important 
semantic content is lost. Therefore, in cases of long gaps, 
only a concealment technique may be offered in order to 
decrease the level of listener annoyance. Usually, an artifi-
cial audio data segment is synthesized that matches the 
content preceding and following the gap in a perceptually 
seamless way. 

The problem of missing audio data concealment has been 
addressed by many researchers, however most papers deal 
with quite short gaps and/or speech signals. The solution 
may have a form of extrapolation or interpolation, depend-
ing on the time constraints in particular application. For 
long gaps, the only realistic approach is interpolation. The 
general idea is typically to build two signal models using 

data segments surrounding the gap, find a correspondence 
between model parameters, form a time-varying model and 
finally synthesize a required number of samples to fit the 
gap. The existing approaches may be categorized into time-
domain and frequency-domain.  

In time domain methods, usually two separate high-order 
auto-regressive (LPC-like) models are built upon the avail-
able data segments [2,3,4]. Subsequently, both segments are 
extrapolated for a number of missing samples by recursively 
feeding the predictor with already predicted samples (a 
reversed time processing is applied to the segment after the 
gap). Finally, left and right-hand predictor outputs are 
merged with a simple cross-fade window in order to ensure 
smooth transition. Such approach allows to seamlessly re-
constructing gaps of 25-50ms, however it works well only 
for stationary and strongly tonal sounds. 

Frequency domain methods rely on frame-based short-
time spectrum being slowly evolving compared to the signal 
in time domain [2]. This allows applying a simpler, low-
order interpolation of the spectral content after calculating 
the FFT from short segments preceding and following the 
gap. The interpolated STFT frames replace those represent-
ing missing samples, and the signal is reconstructed using 
an overlap-add (OLA) procedure [2,5]. 
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Fig. 1. Reconstruction of missing samples using spectral interpolation 

For short gaps (below 25ms), a simple spectral interpola-
tion according to the phase vocoder (PV) principle [6] may 



 

 

be applied (fig. 1). This involves separate processing of 
amplitude and phase of corresponding spectral bins. Magni-
tudes are linearly interpolated between known values of 
border frames, while phase is linearly extrapolated from last 
frame, taking into account particular bin frequency and time 
advance of consecutive frames. This approach does not 
offer satisfactory quality for longer gaps due to the already 
mentioned non-stationarity of music (fig. 2). Furthermore, 
phase continuity principle may be applied only for tonal 
spectral components, because noise is usually characterized 
by an incoherent phase spectrum. Since PV does not distin-
guish tonal partials from noise, longer interpolated segments 
are often rendered as unnatural pseudo-periodic “buzzy” 
sound. 

 

Time [s] 

F
re

qu
en

cy
 [H

z]
 

0.2 0.4 0.6 0.8 1 1.2 0 

5000 

10000 

15000 

Time [s]

F
re

qu
en

cy
 [H

z]
 

0.2 0.4 0.6 0.8 1 1.2
0 

5000 

10000 

15000 Original (detail) Interpolated using PV

 
Fig. 2. Reconstruction problems due to non-stationary of music signal and 

inappropriate dealing with phase for noise component. Note that wrong 
harmonic partials are merged in a glissando note 

A more practical approach is to process only spectral 
peaks corresponding to sinusoidal-like partials. Due to the 
variability of sounds, such peaks in data segments surround-
ing the gap usually do not correspond 1:1, therefore a peak 
matching procedure is required. The natural candidate 
method for detection and matching of peaks is the sinusoidal 
model (SM) [7,8]. Within SM, sinusoidal-like components 
are detected in the short-time magnitude spectra of consecu-
tive signal frames. Subsequently, corresponding parameters 
(local average frequency, amplitude and phase) are esti-
mated and linked by a tracking algorithm that takes into 
account parameter difference in consecutive frames. The 
sinusoidal trajectories obtained in this way allow re-
synthesizing the signal (1), with accuracy depending on 
estimation errors and successful tracking,  
 ∑ ∫= ⎟

⎠
⎞⎜

⎝
⎛ ϕ+ττπ=

N

n n

t

nn dftAtx
1 0

)0()(2sin)()(ˆ ,  (1) 

where n is a sinusoidal partial number, An(t) and fn(t) are its 
interpolated parameters in current frame, φn(0) is the phase 
of partial at the end of previous frame, and N is the number 
of partials. 

II. RECONSTRUCTION BASED ON SINUSOIDAL MODELING 

Early applications of SM to reconstruction of missing au-
dio data employed sinusoidal tracking in a close neighbor-
hood of the gap for simple prediction of the evolution of 
spectral peaks. For example, a group of methods proposed 
in [9] used a straightforward extrapolation of sinusoidal 

trajectories (fig. 3) followed by linking to the trajectories 
beginning after the gap that are closest to the predicted end-
points, and interpolation of the linked segment.  

These methods allowed successfully combining the tra-
jectories and mitigating missing audio content as long as 30-
50ms. However, for longer gaps the evolution of sinusoidal 
partial frequencies and amplitudes often cause significant 
mismatch between trajectories, so it is very difficult to es-
tablish a reliable link between both sides. Also, the simple 
model of partial variations does not provide a realistic inter-
polation of parameters; hence the resulting evolutions are 
often unnaturally smooth. It is partially due to the prediction 
algorithm that was not able to adapt to modulations present 
in music in a form of vibrato and tremolo. Also, the tracking 
algorithm of [7] did not adapt to the musical context. 
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Fig. 3. Application of simple linking algorithm for sinusoidal trajectories of 
data surrounding a gap. Sinusoidal trajectories shown in blue correspond to 
actual data in original signal. Dotted lines represent extrapolation results. 
Solid black trajectories in the white area represent the interpolated data. 

An important progress in tracking adaptability was 
achieved by the application of Hybrid Markov Model and 
Viterbi algorithm [10] as well as linear prediction (LP) [11]. 
The latter modeled the evolution of partial frequencies and 
amplitudes as auto-regressive (AR) processes. It is of a great 
advantage considering that pitch and intensity variations in 
many natural sounds are generated by the motion of player’s 
hand that in turn is governed by simple kinetics. An LP-
based tracking algorithm is capable of learning the character 
of typical vibrato and tremolo from the beginning of the 
note and accurately predicts its further evolution. This pos-
sibility has been exploited in [12] for interpolation of long 
gaps in audio.  

The offline technique proposed in [12] applied Burg 
method of linear prediction to track sinusoidal partials in the 
data preceding and following the gap. The evolutions of 
partial frequencies and amplitudes within gap were pre-
dicted (extrapolated in two directions) using the known 
trajectories ending at both gap boundaries. The final signal 
was obtained by taking a weighted average of both predic-
tion outputs and resynthesizing the signal from interpolated 
trajectory parameters. According to the authors, this method 
allowed for successful mitigation of gaps in music re-
cordings as long as 320-820ms, however the quality 
strongly depended on the character of music, its degree of 
tonality and depth of modulations.  

In our experience this approach still exhibits several 
drawbacks. First of all, the LP-based tracking has a ten-
dency to connect spectral peaks of different partials into one 
trajectory, thus producing excessive modulations of the 



 

 

synthesized content due to the prediction problem being ill 
posed. For example, in a piano music with high polyphony, 
there are a high number of spectral peaks, and some may be 
missed during sinusoidal analysis. Other peaks are some-
times linked into a wrong trajectory that misleads the fre-
quency predictor in the gap segment to produce a sound 
with vibrato, while there must not be a vibrato in piano 
sounds. 

Secondly, only tonal components of the signal are synthe-
sized and in case of a more percussive music the result is 
quite annoying, because it consists of sinusoids instead of 
noise. In the following, we address both issues.  

III. CONTEXT ADAPTATION FOR THE SM-BASED 
PREDICTION AND RECONSTRUCTION 

The simple idea of context adaptation is to observe a 
longer period of signal surrounding the gap in order to learn 
the character of music that may contain mixed instruments 
of constant and variable pitch. In our approach this adapta-
tion is realized by a tracking algorithm that exploits various 
matching criteria for connecting spectral peaks into sinusoi-
dal trajectories. The algorithm first attempts to connect as 
many spectral peaks exhibiting small frequency deviation 
within a long sequence of STFT frames as possible. The 
objective is to maximize the likelihood function, 
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(in ERB scale) and amplitudes (in dB) of spectral peaks in 
the current and the next frame, and σ is a model parameter 
that is learned for a period of several seconds in the 
neighborhood of the gap. A maximum absolute frequency 
difference is additionally constrained at this tracking stage.  

In a subsequent step, the remaining unlinked spectral 
peaks are connected using the Burg predictor method simi-
lar to [11] in order to form trajectories representing partials 
of varying frequency. The algorithm also attempts to com-
bine peak sequences evolving in frequency in a similar way 
into harmonic groups. Tracking of such groups is much 
more reliable. Finally, the trajectories are partitioned into 
two sets (stable and variable), according to what rule has 
been used for linking them.  

For predicting the evolution of sinusoidal trajectories in 
the gap region, different strategies are employed. Trajecto-
ries from the stable set are not predicted by the LP method, 
but rather a constant extrapolator is used that takes a mean 
frequency of the spectral peaks within each trajectory. In 
this way we avoid the risk of introducing a false pitch 
modulation to sounds that should exhibit constant pitch. 
Matching of these is simply based on the frequency differ-
ence, 
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where the arrow-marked terms represent predicted parame-
ter values, and k1 to k2 denote the frame numbers corre-
sponding to the gap.  

For variable partials, left and right-hand predicted trajec-
tories are matched across the gap using normalized L1 dis-
tance criteria, 
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The optimal thresholds of εf and εA are determined em-
pirically. The matched predicted ends are combined by 
using a weighted average (fig. 4). Unmatched trajectories 
are not removed from the model, but rather smoothly faded 
to zero. The length of this fading is determined by the length 
of the trajectory. For trajectories shorter than the length of 
the gap, the extrapolated segment is also appropriately 
shortened. 
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Fig. 4. An example of combining matched trajectories of frequency and 

amplitude for a single partial of the variable class 

After successful matching, a tonal part of the signal is 
synthesized according to (1). Care is taken of exact match-
ing of the phase of partials to the known phase at frame 
boundaries [7] which allows for seamlessly combining the 
synthetic signal with the available original. 

IV. NOISE INTERPOLATION 

The important disadvantage of SM is that it is not able to 
realistically synthesize the background noise, especially in 
the context of spectrally interpolated signals. To cope with 
this problem we perform an additional modeling step using 
LPC. For this purpose, two additional short segments of 
signal are synthesized from sinusoidal trajectories using (1) 
to match known signal segments preceding and following 
the gap. These synthetic signals are subtracted from the 
original signal, so that two segments of residual are obtained 
that contain mostly the background noise.  

Two LPC models of moderate order (typically 20) are 
calculated from this data, using a frequency-warped LPC 
technique of [13]. The reason of using warped LPC is to 
obtain a perceptually uniform resolution in the low fre-
quency range. Predictor coefficients of both are subse-
quently converted into Line spectral frequencies (LSF) 
representation [14] that allows for convenient interpolating 
between two models. A sequence of linearly interpolated 
LSFs is calculated for missing frames. At each frame, the 



 

 

interpolated LSF values are converted back to the predictor 
coefficients form. These are used in an LPC synthesis filter 
configuration that shapes a segment of white noise. In this 
way, a sequence of noise segments is obtained such that its 
power spectral density morphs from that of the beginning of 
gap towards the noise after the gap. All these segments are 
combined using a standard OLA procedure. At the end, the 
interpolated noise is added to the synthetic tonal signal and 
replaces the missing samples within the gap. 

V. EXPERIMENTAL RESULTS 

We have performed a number of tests in order to verify 
the performance of the new technique with respect to an 
implementation of [12] and a simple PV-based reconstruc-
tion. Gaps of lengths varying from 100ms to 1s have been 
cut randomly from a selection of music recordings exhibit-
ing various challenges and processed with all three algo-
rithms. The reconstructed excerpts have been both inspected 
visually (using spectrograms – see fig. 5,6) as well as sub-
jectively evaluated [16] in a double blind critical listening 
environment according to the MUSHRA methodology [15]. 
The general conclusion is that the proposed enhanced tech-
nique always outperforms that of [12], however the audibil-
ity of the difference varies with the character of music. Cer-
tainly, the most substantial advantage in subjective quality 
appears in the case of percussive as well as densely poly-
phonic piano music (fig. 6).  
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Fig. 5. Two reconstruction examples for a violin note with glissando and 

vibrato. Observe, how missing tonal partials are compensated by high 
frequency noise (compare to fig. 2), and how well a natural shape of vibrato 

modulation is recreated. Straight black lines represent gaps boundaries. 

VI. CONCLUSIONS 

An enhanced mitigation technique for long gaps (up to 
0.5s) in music signals has been presented. We show by 
experiments that an application of a simple musical context 
adaptation within a sinusoidal model together with separate 
modeling of the residual noise using an LSF-domain inter-
polated filter brings a substantial improvement in terms of 
seamlessly concealed gap. The applications of the proposed 
technique are in music data streaming and compression. 
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Fig. 6. A comparison of the reconstruction result of the reference technique 
[12] (left) and the new proposed technique (right) for an excerpt of poly-
phonic jazz music with piano and percussion. Note, how the partials of 

piano are erroneously tracked with no context adaptation, and how much of 
the important noise energy is missing in the reference technique. 
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