INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC1/SC29/WG11 CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2019/M53427 April 2020, Alpbach, Austria

SourcePoznań University of Technology (PUT), Poznań, PolandStatusInputTitle[MPEG-I Visual] HEVC-SCC in TMIVAuthorJarosław Samelak, Adrian Dziembowski, Dawid Mieloch, Marek Domański

1 Introduction

This document presents results of the application of HEVC Screen Content Coding, instead of plain HEVC, for coding of TMIV atlases. Results include the discussion on the usability of this technique in further immersive video explorations.

2 Overview of the experiment

The experiment was performed using TMIV2 [N18577].

The experiment followed Common Test Conditions [N18563], with one major change: HEVC encoding was performed on 8-bps atlases, as HEVC-SCC supports only 8 bit pixel depth:

input	=>	atlases	=>	atlases	=>	atlases	=>	atlases	=>	output
10bps /	TMIV	10bps		8bps	HEVC	8bps		10bps	TMIV	10bps
16bps	encoder								decoder	

The configuration of both tested video encoders was identical (excl. SCC-specific parameters).

3 Experimental results

The results of the performed experiment are presented in the table below:

	Proposal vs. Low/High-bitrate Anchors													
Test class	Sequence	Anchor (ff)	High-BR	Low-BR	Max	High-BR	Low-BR	High-BR	Low-BR	High-BR	Low-BR	High-BR	Low-BR	Pixel
			BD rate	BD rate	delta	BD rate	rate							
			Y-PSNR	Y-PSNR	Y-PSNR	VIF	VIF	VMAF	VMAF	MS-SSIM	MS-SSIM	IV-PSNR	IV-PSNR	ratio
	ClassroomVideo	AA97 (MIV)	-24.9%	-19.9%	4.38	-10.4%	-11.3%	-18.1%	-14.7%	-10.3%	-10.3%	-9.1%	-11.4%	0.00%
6	TechnicolorMuseum	BA97 (MIV)	-8.4%	-7.3%	15.85	-4.3%	-3.8%	-10.1%	-7.4%	-4.9%	-4.1%	-4.9%	-4.6%	0.00%
	TechnicolorHijack	CA97 (MIV)	-23.1%	-16.5%	12.03	-16.5%	-13.3%	-23.2%	-16.9%	-19.2%	-12.6%	-10.7%	-7.7%	0.00%
	OrangeKitchen	JA97 (MIV)	-23.0%	-22.3%	20.31	-16.6%	-16.1%	-32.2%	-28.2%	-17.1%	-15.5%	-4.7%	-6.6%	0.00%
		MIV	-19.8%	-16.5%	20.31	-12.0%	-11.1%	-20.9%	-16.8%	-12.9%	-10.6%	-7.4%	-7.6%	0.00%
		All anchors	-19.8%	-16.5%	20.31	-12.0%	-11.1%	-20.9%	-16.8%	-12.9%	-10.6%	-7.4%	-7.6%	0.00%
	TechnicolorPainter	DA97 (MIV)	-3.7%	-3.0%	7.81	-4.1%	-3.4%	-3.5%	-2.4%	-3.9%	-2.9%	-3.8%	-2.9%	0.00%
NC	IntelFrog	EA97 (MIV)	-3.4%	-4.3%	7.52	-2.6%	-2.8%	-5.7%	-4.4%	-4.4%	-3.8%	-0.3%	-2.7%	0.00%
	PoznanFencing	LA97 (MIV)	-12.5%	-10.3%	14.98	-12.5%	-9.9%	-12.2%	-8.3%	-12.3%	-8.3%	-11.2%	-7.7%	0.00%
		MIV	-6.6%	-5.9%	14.98	-6.4%	-5.3%	-7.1%	-5.0%	-6.9%	-5.0%	-5.1%	-4.4%	0.00%
		All anchors	-6.6%	-5.9%	14.98	-6.4%	-5.3%	-7.1%	-5.0%	-6.9%	-5.0%	-5.1%	-4.4%	0.00%
Test class	Sequence	Anchor (ff)	High-BR	Low-BR	Max	High-BR	Low-BR	High-BR	Low-BR	High-BR	Low-BR	High-BR	Low-BR	Pixel
			BD rate	BD rate	delta	BD rate	rate							
			Y-PSNR	Y-PSNR	Y-PSNR	VIF	VIF	VMAF	VMAF	MS-SSIM	MS-SSIM	IV-PSNR	IV-PSNR	ratio
All		MIV	-14.1%	-11.9%	11.84	-9.6%	-8.7%	-15.0%	-11.8%	-10.3%	-8.2%	-6.4%	-6.2%	0.00%
		All anchors	-14.1%	-11.9%	11.84	-9.6%	-8.7%	-15.0%	-11.8%	-10.3%	-8.2%	-6.4%	-6.2%	0.00%

As the results show, HEVC-SCC clearly outperforms plain HEVC in TMIV application, especially for CG content.

Three consecutive tables present bitrate reduction for all sequences and all rates.

	SA	SB	SC	SJ	SD	SE	SL
QP1	-1.6%	-3.3%	-10.6%	-11.9%	-3.5%	-1.0%	-9.4%
QP2	-4.0%	-3.3%	-10.0%	-12.6%	-4.5%	-2.1%	-12.8%
QP3	-8.3%	-3.4%	-7.3%	-12.9%	-4.6%	-2.9%	-13.6%
QP4	-9.7%	-3.4%	-3.8%	-12.0%	-3.8%	-2.3%	-9.2%
QP5	-4.6%	-2.0%	-1.7%	-11.5%	-1.2%	-0.8%	-0.5%
average	-5.6%	-3.1%	-6.7%	-12.2%	-3.5%	-1.8%	-9.1%

Bitrate reduction (overall)

Bitrate reduction (texture)

	SA	SB	SC	SJ	SD	SE	SL
QP1	-0.1%	-2.1%	-6.6%	-6.8%	-0.4%	-0.3%	-0.5%
QP2	-0.3%	-2.2%	-6.9%	-6.7%	-1.4%	-0.9%	-0.7%
QP3	-1.5%	-2.3%	-6.3%	-5.7%	-1.9%	-1.4%	-0.7%
QP4	-2.7%	-2.5%	-4.6%	-4.4%	-1.5%	-1.7%	-0.7%
QP5	-1.7%	-1.9%	-1.8%	-3.3%	-0.9%	-1.5%	-0.5%
average	-1.3%	-2.2%	-5.2%	-5.4%	-1.2%	-1.2%	-0.6%

Bitrate reduction (depth)

	SA	SB	SC	SJ	SD	SE	SL
QP1	-23.0%	-19.5%	-23.7%	-27.1%	-5.0%	-2.3%	-15.7%
QP2	-19.4%	-15.3%	-16.4%	-25.5%	-5.5%	-4.0%	-17.5%
QP3	-18.3%	-13.0%	-8.0%	-24.1%	-5.4%	-5.6%	-17.4%
QP4	-15.6%	-8.8%	0.1%	-21.2%	-4.4%	-3.6%	-11.4%
QP5	-6.9%	-2.7%	2.9%	-19.8%	-1.3%	0.7%	-0.5%
average	-16.6%	-11.8%	-9.0%	-23.5%	-4.3%	-3.0%	-12.5%

In the last table, HEVC-SCC effectiveness for basic and additional atlases is compared.

and patches from additional views									
	tex	ture	de	pth					
	CG	NC	CG	NC					
basic atlas	-0.72%	-0.27%	-10.40%	-5.71%					
additional atlas	-4.43%	-1.17%	-15.91%	-5.20%					

Average bitrate reduction for atlases containing basic views

Also, the subjective quality of synthesized views is better when HEVC-SCC is used (Fig. 1), because of better preserved edges in depth atlases (Fig. 2).

-5.20%

Fig. 1. Fragments of synthesized virtual views (QP5).

Fig. 2. Fragment of depth atlas (SA, QP5).

4 Attachments

- 1. Reporting template (A97),
- 2. Plain HEVC configuration file,
- 3. HEVC-SCC configuration file.

5 Acknowledgement

This work was supported by the Ministry of Science and Higher Education.

6 Recommendations

We recommend considering using HEVC-SCC for Immersive Video encoding.

7 References

- [N18563] Common Test Conditions for Immersive Video, ISO/IEC JTC1/SC29/WG11 MPEG/N18563, Göteborg, Sweden, July 2019
- [N18577] Test Model 2 for Immersive Video,
 ISO/IEC JTC1/SC29/WG11 MPEG/N18577, Göteborg, Sweden, July 2019