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Abstract 

Omnidirectional video formats are currently considered within MPEG in the context of 6DoF/3DoF+ video 

technology. Unfortunately, the current version of Depth Estimation Reference Software does not allow 

depth estimation from video acquired by multiple omnidirectional cameras, needed to create multi-point 

6DoF/3DoF+ scene representation. In this document, we present novel depth estimation technique and 

software developed by Poznań University of Technology (PUT) and Electronics and Telecommunications 

Research Institute (ETRI), called Immersive Video Depth Estimation (IVDE), which addresses these 

deficiencies. Full source code of the method and CTC-based comparison with RDE are included in this 

contribution. 

1 Introduction   
 

One of the subjects considered in the current MPEG-I activities in the context of prospective 6DoF/3DoF+ 

video technology are omnidirectional video formats. Acquisition of video with an omnidirectional camera 

or with several omnidirectional cameras positioned in distinct locations seems to be a very promising way 

to capture real, natural 3D content. It is therefore important to develop tools allowing further research.  



   

2 Overview of the method 

The particular usefulness of the presented method in virtual navigation, free-viewpoint television and other 

6DoF systems, is a result of the joint exploitation of the ideas mentioned below: 

 

 Depth is estimated for segments instead of individual pixels, and thus the size of segments can be used 

to control the trade-off between the quality of depth maps and the processing time of estimation. Larger 

segments can be used to attain fast depth estimation, or finer segments can be used to attain higher 

quality. 

 Estimation is performed for all views simultaneously and produces depths that are inter-view 

consistent because of the utilization of the new formulation of the cost function, developed for 

segment-based estimation. 

 No assumptions about the positioning of views are stated: any number of arbitrarily positioned cameras 

(both perspective and omnidirectional) can be used during the estimation. 

 In the proposed temporal consistency enhancement method, depth maps estimated in previous frames 

are utilized in the estimation of depth for the current frame, increasing the consistency of depth maps 

and simultaneously decreasing the processing time of estimation. 

 The proposed depth estimation framework uses a novel parallelization method that significantly 

reduces the processing time of graph-based depth estimation. 

The new framework does not use any external libraries for image processing operations. Such libraries offer 

a very wide spectrum of image processing solutions, but they have a negative impact on the easiness of 

their use in other frameworks. Moreover, OpenCV does not provide full compatibility between different 

versions of this library, which provides further difficulties during the development of new software. 

2.1 Depth estimation 

The estimation of depth in the proposed method is based on a cost function minimization. The cost function 

is based on two components: the intra-view discontinuity cost 𝑉𝑠,𝑡 and the inter-view matching cost 𝑀𝑠,𝑠′ , 

responsible for the inter-view consistency of depth maps: 

𝐸(d) = ∑ ∑ { ∑ 𝑀𝑠,s′(𝑑𝑠)

𝑐′∈D

+ ∑ 𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡)

𝑡∈T

}

𝑠∈S𝑐∈C

 , 

where: 

d – vector containing depth value for each segment in all views, 

C  – set of views,  

𝑐 – view used in the estimation, 

D  – set of views neighboring to the view 𝑐,  

𝑐′ – view neighboring to the view 𝑐, 

S – set of segments of the view 𝑐, 

𝑠  – segment in the view 𝑐,  

𝑑𝑠  – currently considered depth of the segment 𝑠, 𝑑𝑠 ∈ d , 

𝑠′  – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the currently 

considered depth 𝑑𝑠 ,  



   

𝑀𝑠,𝑠′ – inter-view matching cost between segments 𝑠 and 𝑠′, 

T – set of segments neighboring to the segment 𝑠, 

𝑡 – segment neighboring to the segment 𝑠, 

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡, 

𝑑𝑡  – currently considered depth of the segment 𝑡, 𝑑𝑠 ∈ d . 

 

 
Fig. 1. Inter-view and intra-view costs. 

 

The intra-view discontinuity cost is calculated between all neighboring segments within the same view: 

𝑉𝑠,𝑡(𝑑𝑠 , 𝑑𝑡) = 𝛽 ∙ |𝑑𝑠 − 𝑑𝑡| , 

where: 

𝛽  – smoothing coefficient,  

𝑑𝑠 – currently considered depth of the segment 𝑠, 

𝑠  – segment in the view 𝑐,  

𝑡 – segment neighboring to the segment 𝑠, 

𝑉𝑠,𝑡 – intra-view discontinuity cost between segments 𝑠 and 𝑡, 

𝑑𝑡  – currently considered depth of the segment 𝑡.  

 

In the proposed method the smoothing coefficient 𝛽 is not fixed for all segments, instead, the smoothing 

coefficient is calculated using a similarity of two neighbouring segments s and t and 𝛽0 that is an initial 

smoothing coefficient: 

𝛽 = 𝛽0/‖[�̂� �̂�𝑏 �̂�𝑟]𝑠 − [�̂� �̂�𝑏 �̂�𝑟]𝑡‖
1
 , 

where:  

𝛽 – smoothing coefficient , 

𝛽0 – initial smoothing coefficient provided by the user, 

‖∙‖1  – L1 distance,  

𝑠  – segment in the view 𝑐,  

𝑡 – segment neighbouring to the segment 𝑠, 

[�̂� �̂�𝑏 �̂�𝑟]𝑠 – vector of average Y, Cb, Cr color components of the segment 𝑠, 

[�̂� �̂�𝑏 �̂�𝑟]𝑡 – vector of average Y, Cb, Cr color components of the segment 𝑡. 



   

 

The core of the inter-view matching cost, denoted as 𝑚𝑠,𝑠′, is: 

𝑚𝑠,𝑠′(𝑑𝑠) =
1

𝑐𝑜𝑢𝑛𝑡(𝑊)
∑ ‖[𝑌𝐶𝑏𝐶𝑟]𝜇𝑠+𝑤 − [𝑌𝐶𝑏𝐶𝑟]𝑇[𝜇𝑠]+𝑤‖

1
𝑤∈W

 , 

where: 

W  – set of points in the window of the size specified by the user, 

count(∙)  – size of the window W, 

𝑤 – vector of coordinates of a point in the window W, 

‖∙‖1  – L1 distance,  

𝜇𝑠 – vector of coordinates of center of a segment 𝑠, 

𝑇[∙] – 3D transform obtained from intrinsic and extrinsic parameters of cameras, 

[𝑌 𝐶𝑏 𝐶𝑟]𝜇𝑠+𝑤  – vector of Y, Cb, Cr color components of the center 𝜇𝑠 of the segment 𝑠, 

[𝑌 𝐶𝑏 𝐶𝑟]𝑇[𝜇𝑠]+𝑤 – vector of Y, Cb, Cr color components of the point in a view 𝑐′  

corresponding to the center 𝜇𝑠 of the segment 𝑠 in a view 𝑐.   

In order to achieve the inter-view consistency of depth maps, the value of the inter-view matching cost 

𝑀𝑠,𝑠′(𝑑𝑠) is calculated as [6]: 

𝑀𝑠,𝑠′(𝑑𝑠) = {
min {0, 𝑚𝑠,𝑠′(𝑑𝑠) − 𝐾} 𝑖𝑓 𝑑𝑠 = 𝑑𝑠′

0 𝑖𝑓 𝑑𝑠 ≠ 𝑑𝑠′
  , 

where: 

𝑠  – segment in the view 𝑐,  

𝑑𝑠  – currently considered depth of the segment 𝑠, 

𝑠′  – segment in the view 𝑐′, which corresponds to the segment 𝑠 in the view 𝑐 for the 

  currently considered depth 𝑑𝑠 ,  

𝑑𝑠′  – currently considered depth of the segment 𝑠′, 

𝑀𝑠,𝑠′  – inter-view matching cost between segments 𝑠 and 𝑠′, 

𝑚𝑠,𝑠′  – core of the inter-view matching cost between segments 𝑠 and 𝑠′, 

𝐾  – a positive constant. 

The value of constant 𝐾 is selected so that the inter-view matching cost 𝑀𝑠,𝑠′  is not dominated by the 

intra-view discontinuity cost 𝑉𝑠,𝑡 , as a sum of these two costs constitutes the cost function of the depth 

optimisation. The chosen final value of 𝐾 in presented research is 30, as it provides the high quality of 

estimated depth maps for all tested sequences. The use of both equirectangular and perspective views is 

included in the 3D transform 𝑇[∙].  

In order to increase the final quality of estimated depth maps, we propose a new segment-based method of 

the depth enhancement, named neighboring segments depth analysis.  

The proposed process is performed for each segment in estimated depth maps. For the currently processed 

segment, depth values of its neighboring segments are tested as new depth candidates for this segment. A 

depth value is used if two conditions are fulfilled: use of this depth reduces the inter-view matching cost 

for the processed segment and a corresponding segment in neighboring view targeted by this depth also has 

the same value of depth. 

The proposed solution increases the quality of depth maps in areas of uncertain depth (e.g., disoccluded 

areas) and preserves the inter-view consistency of depth maps. Moreover, because the process is performed 

after estimating the depth for each frame, such enhanced depth is used for all following frames (because of 

segmentation-based temporal enhancement). Therefore, such an approach increases the quality of depth 

maps also in terms of temporal consistency. 



   

2.2 Temporal consistency enhancement 

In natural video sequences, only a small part of an acquired scene considerably changes in consecutive 

frames, especially when cameras are not moving during the acquisition of video. The idea of the proposed 

temporal consistency enhancement of depth estimation is to calculate a new value of depth only for the 

segments that changed (in terms of their color) in comparison with the previous frame. 

The proposed temporal consistency enhancement method allows us to automatically mark segments as 

unchanged in consecutive frames. These segments are used in the calculation of the intra-view discontinuity 

and the inter-view matching cost for other segments, but are not represented by any node in the structure of 

the optimized graph. It reduces the number of nodes in the graph, making the optimization process 

significantly faster, and on the other hand, increases the temporal consistency of estimated depth maps. 

In the first frame of a depth map, denoted as an “I-type” depth frame, the estimation is performed for all 

segments, as described in the previous sections. The following frames (“P-type” depth frames) can utilize 

depth information from the preceding P-type depth frame and the I-type depth frame.  

Segment 𝑠  is marked by the algorithm as unchanged in two cases: if all components of the vector 

[�̂��̂�𝑏�̂�𝑟]𝑠 of average Y, Cb and Cr color components changed less than the set threshold 𝑇 in comparison 

with segment 𝑠𝐵, which is a collocated segment in the previous P-type frame, or, if all components of the 

abovementioned vector changed less than the threshold 𝑇 in comparison with segment 𝑠𝐼 – a collocated 

segment in the I-type frame. If any of these two conditions are met, then segment 𝑠 adopts the depth from 

the segment 𝑠𝐵 or 𝑠𝐼 (depending on which condition was fulfilled).  

A collocated segment in the previous or the first frame is simply the segment which contains the central 

point of the segment 𝑠. Therefore, even if the segmentation in compared frames is not the same, the 

algorithm can easily find the corresponding segment in these frames.  

The introduction of two reference depth frames has a beneficial impact on the visual quality of virtual 

navigation. First, the adoption of depth from the previous P-type depth frame allows us to use the depth of 

objects that changed their position over time. On the other hand, the adoption of depth from the I-type depth 

frame minimizes the flickering of depth in the background. 

 

2.3 Parallelization of graph-based optimization 

In our proposal, each of n threads estimates a depth map with an n-times lower number of depth levels. 

Depth maps with a reduced number of depth levels that were calculated by different threads have to be 

merged into one depth map. The merging process is performed in a similar way as depth estimation [using 

the cost function (1)], but only two levels of depth are considered for each segment – i.e., the depth of a 

segment from thread 𝑡 or the depth from thread 𝑡 + 1 (Fig. 4). Only two depth maps can be merged into 

one by one thread during the merging cycle. Therefore, for n threads, ⌈𝑙𝑜𝑔2(𝑛)⌉ of additional cycles are 

needed to estimate the final depth map with all depth levels.  

 
Fig. 2. Depth levels are divided into blocks, each rectangle represents a different level of the depth of a 

scene. 

Of course, even without the use of parallelization, all cores of the CPU can also be used for depth estimation, 

e.g., each core can perform the estimation of depth for different sets of input views (e.g., for each 5 cameras 



   

of the system), or for different frames of the sequence. Unfortunately, when many standalone depth 

estimation processes are performed, it results in the loss of inter-view consistency or temporal consistency 

of estimated depth maps. When the proposed parallelization is used, both inter-view and temporal 

consistency of depth maps, which are fundamental for the quality of virtual view synthesis, are preserved. 

 

 
Fig. 3. Depth map merging process for the case of 4-thread parallelization. 

 

 

2.4 Segmentation in omnidirectional videos 

The use of omnidirectional cameras is taken into account during the superpixel segmentation of input views. 

The superpixel segmentation [2] is based on the calculation of the color and spatial distances of a point to 

neighboring superpixels.  

Fig. 4. shows initial grid of 1000 superpixels used in the beginning of segmentation process. To estimate 

such initial grid, the overall size of image is divided by the number of superpixels in order to acquire the 

average size of superpixel. Then, the square root of the resulting superpixel size is used to define the 

distance between centers of superpixels and, in the end, the whole image is divided evenly as presented in 

the figure below. 

 
Fig. 4. Initial grid of superpixels used in segmentation. 

In next steps, segments’ shapes are changed on the basis of color and spatial distances of neighboring points 

in order to match edges present in a scene. The final segmentation of a omnidirectional sequence can be 

seen in Fig.  5. 



   

Segments on the top and bottom border of presented image have similar size in the whole image. However, 

in equirectangular image, areas in the top and the bottom of an image represent much smaller areas of a 

scene than areas in the middle of an image. Therefore, if the segmentation of the image would be not adapted 

to the equirectangular images, then the accuracy of estimated depth maps would be not consistent in for the 

whole image in the proposed method. 

 

Fig. 5. Result of unmodified superpixel segmentation for an equirectangular image. 

First of all, the initial segmentation of 360 video should be based on the equirectangular projection. First of 

all, as in the process of unmodified segmentation, the average distance between centers of segments is 

calculated as square root of the average size of a segment. This average distance is used to calculate the 

number of superpixels on the ‘equator’ (central row) of an equirectangular image. The number of 

superpixels in rows that are above or under the equator is proportionally lower, because these rows represent 

circles on a sphere that are smaller than the circle represented by the equator. The result of such initial grid 

of superpixels in an equirectangular image is presented in Fig. 6. 

The calculation of the spatial distance in case of an omnidirectional image has to be based not simply on 

the difference of positions of two points in an image, but on the distance between these points before the 

equirectangular projection, using appropriate formulas.  

The final result of such modified superpixel segmentation, adapted to equirectangular images, can be seen 

in Fig. 7. The size of segments in the center of an image is smaller than in unmodified superpixel 

segmentation, while the size of segments in the top and the bottom of an image is much larger, therefore, 

the proposed segmentation better represents real relative sizes of objects present in a scene. 

 
Fig. 6. Proposed initial grid of superpixels used in segmentation of an equirectangular image. 



   

 
Fig. 7. Result of modified superpixel segmentation for an equirectangular image. 

3 Experimental results 
In order to fully test the proposed method, a series of experimental tests was performed. Tests followed 

Common Test Conditions [3] and Exploration Experiments evaluation scheme [4]. The proposal was 

compared with RDE 0.94 [5]. 

Only one exception from the CTC was made: in ULB Baby Unicorn sequence the z-near was changed, as 

the previous one does not include whole range of depth (for views 20 to 24). 

The comparison includes: 

- softwares with no parallelization, 150 000 segments per view for IVDE (Table 1).  

- multi-threaded (8 threads for RDE and 2 for IVDE) versions of softwares, 150 000 segments per 

view for IVDE (Table 2) 

- multi-threaded (8 threads for RDE and 2 for IVDE) versions of softwares, 50 000 segments per 

view for IVDE (Table 3) 

 

Additionally, comparison of depth estimated for ClassroomVideo (vs. original, synthetic depth) using 

TMIV4 are presented in document M53567 [7]. 

 



   

Table 1. RDE (no parallelization) vs IVDE/ETRI depth estimation  

(no parallelization, 150 000 segments per view) 

Test 

sequence M
et

h
o

d
 

IV-

PSNR 

(dB) 

∆IV-

PSNR 

(max –

min) 

(dB) 

Y-

PSNR 

(dB) 

∆Y-

PSNR 

(dB) 

U-

PSNR 

(dB) 

∆U-

PSNR 

(dB) 

V-

PSNR 

(dB) 

∆V-

PSNR 

(dB) 

Time 

per one 

view 

and 

frame 

(sec) 

Memory 

per one 

view 

(GB) 

IntelFrog 

RDE 38.26 6.92 27.84 5.62 42.36 3.93 41.18 4.72 188.9 3.4 

IVDE 37.29 7.45 27.06 5.53 41.84 4.60 40.17 5.63 203.8 0.3 

Diff -0.97 0.53 -0.78 -0.09 -0.52 0.67 -1.02 0.90 14.9 -3.1 

Orange 

Dancing 

RDE 42.54 5.91 32.09 3.84 49.75 3.24 51.48 3.73 117.8 6.1 

IVDE 41.85 5.25 30.85 3.52 49.17 2.79 50.96 3.47 77.6 0.3 

Diff -0.69 -0.66 -1.24 -0.31 -0.58 -0.44 -0.52 -0.26 -40.2 -5.8 

Orange 

Kitchen 

RDE 39.17 7.06 31.38 7.15 46.84 8.67 49.20 11.60 150.7 4.9 

IVDE 41.33 7.24 32.93 4.90 47.61 9.13 49.92 12.39 80.7 0.3 

Diff 2.15 0.18 1.55 -2.25 0.78 0.47 0.72 0.79 -70.0 -4.6 

Orange 

Shaman 

RDE 46.34 11.12 38.72 6.82 48.46 7.97 46.39 7.56 116.3 4.7 

IVDE 46.76 9.83 38.47 6.16 48.72 6.97 46.68 6.98 89.1 0.3 

Diff 0.42 -1.29 -0.26 -0.66 0.26 -1.00 0.30 -0.58 -27.2 -4.4 

Poznan 

Fencing 

RDE 38.34 4.37 30.13 2.76 45.44 2.16 44.56 1.97 337.7 6.1 

IVDE 39.98 5.92 29.58 4.03 45.05 3.26 44.18 2.72 278.4 0.3 

Diff 1.65 1.55 -0.55 1.27 -0.39 1.10 -0.38 0.75 -59.3 -5.8 

Technicol

orPainter 

RDE 40.38 9.84 31.70 7.30 45.52 5.61 44.46 6.69 188.2 5.8 

IVDE 40.40 8.23 32.38 5.58 45.87 5.42 44.93 6.35 225.0 0.4 

Diff 0.03 -1.61 0.68 -1.71 0.35 -0.19 0.48 -0.34 36.8 -5.4 

ULBBaby 

Unicorn 

RDE 34.33 11.70 27.37 8.66 37.70 9.50 36.98 7.49 1290.3 17.1 

IVDE 35.17 10.52 27.83 8.18 38.08 6.46 37.67 4.63 153.8 0.3 

Diff 0.84 -1.18 0.47 -0.48 0.39 -3.03 0.69 -2.86 -1136.5 -16.8 

ULBUnic

ornA 

RDE 40.14 2.43 30.96 3.79 43.84 2.65 44.04 2.66 312.6 7.7 

IVDE 39.14 2.21 29.26 3.32 43.12 2.47 43.45 2.40 245.0 0.3 

Diff -1.01 -0.23 -1.70 -0.48 -0.72 -0.17 -0.58 -0.26 32.4 -7.4 

ULBUnic

ornB 

RDE 40.78 2.18 31.96 2.11 44.29 1.68 44.62 1.41 348.0 9.7 

IVDE 40.21 2.14 30.41 3.11 43.88 2.02 43.97 1.62 386.1 0.3 

Diff -0.57 -0.05 -1.55 1.00 -0.40 0.34 -0.66 0.20 38.1 -9.4 

Average 

RDE 40.03 6.84 31.35 5.34 44.91 5.04 44.77 5.32 338.9 7.3 

IVDE 40.24 6.53 30.98 4.93 44.82 4.79 44.66 5.13 204.4 0.3 

Diff 0.21 -0.31 -0.37 -0.41 -0.09 -0.25 -0.11 -0.18 -134.5 -6.9 

 



   

Table 2. RDE (parallelization using 8 threads) vs IVDE depth estimation  

(parallelization using 2 threads, 150 000 segments per view) 

Test 

sequence M
et

h
o

d
 

IV-

PSNR 

(dB) 

∆IV-

PSNR 

(dB) 

Y-

PSNR 

(dB) 

∆Y-

PSNR 

(dB) 

U-

PSNR 

(dB) 

∆U-

PSNR 

(dB) 

V-

PSNR 

(dB) 

∆V-

PSNR 

(dB) 

Time 

per one 

view 

and 

frame 

(sec) 

Memory 

per one 

view 

(GB) 

IntelFrog 

RDE 38.26 6.92 27.84 5.62 42.36 3.93 41.18 4.72 168.8 3.4 

IVDE 37.17 7.19 26.96 5.45 41.81 4.55 40.10 5.48 182.6 0.5 

Diff -1.09 0.27 -0.89 -0.17 -0.55 0.62 -1.09 0.75 13.8 -2.9 

Orange 

Dancing 

RDE 42.54 5.91 32.09 3.84 49.75 3.24 51.48 3.73 107.3 6.1 

IVDE 41.85 5.28 30.85 3.54 49.17 2.77 50.96 3.52 48.8 0.5 

Diff -0.69 -0.63 -1.24 -0.29 -0.58 -0.47 -0.52 -0.22 -58.4 -5.6 

Orange 

Kitchen 

RDE 39.17 7.06 31.38 7.15 46.84 8.67 49.20 11.60 136.5 4.9 

IVDE 41.26 7.21 32.90 4.82 47.55 9.13 49.92 12.41 51.6 0.6 

Diff 2.09 0.15 1.52 -2.32 0.71 0.47 0.72 0.80 -84.9 -4.3 

Orange 

Shaman 

RDE 46.34 11.12 38.72 6.82 48.46 7.97 46.39 7.56 108.0 4.7 

IVDE 46.99 9.80 38.58 6.07 48.85 6.95 46.83 6.79 54.7 0.6 

Diff 0.65 -1.31 -0.14 -0.75 0.39 -1.01 0.45 -0.77 -53.3 -4.1 

Poznan 

Fencing 

RDE 38.34 4.37 30.13 2.76 45.44 2.16 44.56 1.97 309.8 6.1 

IVDE 39.98 5.92 29.58 4.03 45.05 3.26 44.18 2.72 212.4 0.6 

Diff 1.64 1.55 -0.55 1.27 -0.39 1.10 -0.38 0.75 -97.3 -5.6 

Technicol

orPainter 

RDE 40.38 9.84 31.70 7.30 45.52 5.61 44.46 6.69 170.3 5.8 

IVDE 40.52 8.65 32.44 5.80 45.88 5.46 44.93 6.39 165.4 0.6 

Diff 0.15 -1.19 0.74 -1.49 0.35 -0.15 0.48 -0.30 -4.9 -5.2 

ULBBaby 

Unicorn 

RDE 34.33 11.70 27.37 8.66 37.70 9.50 36.98 7.49 1102.6 17.1 

IVDE 35.32 10.40 27.90 8.04 38.08 6.46 37.67 4.63 92.8 0.5 

Diff 0.99 -1.30 0.54 -0.62 0.39 -3.03 0.69 -2.86 -1009.7 -16.6 

ULBUnic

ornA 

RDE 40.14 2.43 30.96 3.79 43.84 2.65 44.04 2.66 285.0 7.7 

IVDE 39.11 2.24 29.24 3.31 43.12 2.45 43.45 2.40 254.0 0.5 

Diff -1.04 -0.19 -1.72 -0.48 -0.72 -0.19 -0.59 -0.26 -31.0 -7.2 

ULBUnic

ornB 

RDE 40.78 2.18 31.96 2.11 44.29 1.68 44.62 1.41 318.1 9.7 

IVDE 40.19 2.18 30.33 2.73 43.89 2.06 44.02 1.67 261.9 0.6 

Diff -0.59 0.00 -1.63 0.62 -0.40 0.38 -0.60 0.26 -56.3 -9.1 

Average 

RDE 40.03 6.84 31.35 5.34 44.91 5.04 44.77 5.32 300.7 7.3 

IVDE 40.27 6.54 30.98 4.87 44.82 4.79 44.67 5.11 147.1 0.5 

Diff 0.23 -0.30 -0.37 -0.47 -0.09 -0.25 -0.09 -0.21 -153.6 -6.7 



   

Table 3. RDE (parallelization using 8 threads) vs IVDE depth estimation  

(parallelization using 2 threads, 50 000 segments per view). 

Test 

sequence M
et

h
o

d
 

IV-

PSNR 

(dB) 

∆IV-

PSNR 

(dB) 

Y-

PSNR 

(dB) 

∆Y-

PSNR 

(dB) 

U-

PSNR 

(dB) 

∆U-

PSNR 

(dB) 

V-

PSNR 

(dB) 

∆V-

PSNR 

(dB) 

Time 

per one 

view 

and 

frame 

(sec) 

Memory 

per one 

view 

(GB) 

IntelFrog 

RDE 38.26 5.62 27.84 5.62 42.36 3.93 41.18 4.72 168.8 3.4 

IVDE 36.90 5.01 26.80 5.53 41.86 4.21 39.99 4.49 42.6 0.2 

Diff -1.36 -0.61 -1.04 -0.09 -0.50 0.28 -1.19 -0.23 -126.2 -3.2 

Orange 

Dancing 

RDE 42.54 3.84 32.09 3.84 49.75 3.24 51.48 3.73 107.3 6.1 

IVDE 41.42 2.79 30.22 3.52 48.71 2.54 50.65 3.49 12.1 0.2 

Diff -1.12 -1.04 -1.87 -0.31 -1.05 -0.70 -0.83 -0.24 -95.2 -5.9 

Orange 

Kitchen 

RDE 39.17 7.15 31.38 7.15 46.84 8.67 49.20 11.60 136.5 4.9 

IVDE 41.02 4.46 32.29 4.90 47.22 8.64 49.60 12.12 15.4 0.2 

Diff 1.84 -2.69 0.91 -2.25 0.38 -0.03 0.41 0.51 -121.1 -4.7 

Orange 

Shaman 

RDE 46.34 6.82 38.72 6.82 48.46 7.97 46.39 7.56 108.0 4.7 

IVDE 46.10 5.28 37.52 6.16 48.08 6.50 46.00 6.17 17.1 0.2 

Diff -0.24 -1.55 -1.21 -0.66 -0.38 -1.46 -0.39 -1.39 -90.9 -4.5 

Poznan 

Fencing 

RDE 38.34 2.76 30.13 2.76 45.44 2.16 44.56 1.97 309.8 6.1 

IVDE 39.46 3.74 29.17 4.03 44.93 3.11 44.11 2.73 42.9 0.2 

Diff 1.12 0.98 -0.96 1.27 -0.51 0.95 -0.45 0.76 -266.9 -5.9 

Technicol

orPainter 

RDE 40.38 7.30 31.70 7.30 45.52 5.61 44.46 6.69 170.3 5.8 

IVDE 40.57 6.44 32.61 5.58 45.85 5.38 44.91 6.36 35.4 0.2 

Diff 0.19 -0.85 0.91 -1.71 0.32 -0.23 0.46 -0.33 -134.9 -5.6 

ULBBaby 

Unicorn 

RDE 34.33 8.66 27.37 8.66 37.70 9.50 36.98 7.49 1102.6 17.1 

IVDE 35.01 7.80 27.67 8.18 38.03 6.33 37.61 4.49 36.5 0.2 

Diff 0.69 -0.86 0.30 -0.48 0.34 -3.16 0.63 -3.00 -1066.1 -16.9 

ULBUnic

ornA 

RDE 40.14 3.79 30.96 3.79 43.84 2.65 44.04 2.66 285.0 7.7 

IVDE 38.96 3.43 28.93 3.32 42.89 2.77 43.27 2.48 56.6 0.2 

Diff -1.18 -0.36 -2.03 -0.48 -0.95 0.12 -0.76 -0.18 -228.4 -7.5 

ULBUnic

ornB 

RDE 40.78 2.11 31.96 2.11 44.29 1.68 44.62 1.41 318.1 9.7 

IVDE 40.06 2.83 29.98 3.11 43.88 2.13 43.98 1.79 57.3 0.2 

Diff -0.72 0.72 -1.98 1.00 -0.41 0.45 -0.64 0.38 -260.8 -9.5 

Average 

RDE 40.03 5.34 31.35 5.34 44.91 5.04 44.77 5.32 300.7 7.3 

IVDE 39.94 4.64 30.58 4.93 44.60 4.62 44.46 4.90 35.1 0.2 

Diff -0.09 -0.70 -0.77 -0.41 -0.30 -0.42 -0.31 -0.41 -265.6 -7.1 

 



   

Table 4. RDE (parallelization using 8 threads) vs IVDE depth estimation  

(parallelization using 2 threads, 50 000 segments per view) and IVDE depth estimation  

(parallelization using 2 threads, 150 000 segments per view) 

 

 

The presented results show that the objective quality of RDE and IVDE is very similar. However, results 

show that IVDE achieves: 

 

 smaller deltas of PSNR – result of simultaneous estimation for all input views, depth maps are also 

much more inter-view consistent, 

 much shorter time of depth estimation (per one view and frame), 

 much smaller memory consumption, dependent only on number of cameras and number of 

segments per view 

Moreover, all configuration parameters, except for one (SmoothingCoefficient) are common for all the 

sequences. Below, the results of TMIV with automatic calculation of this coefficient were added. 

 

Table 5. IVDE depth estimation (parallelization using 2 threads, 50 000 segments per view) and IVDE 

depth estimation with automatic smoothing coefficient calculation (parallelization using 2 threads, 

150 000 segments per view) 

 

 

  

Method 

IV-

PSNR 

(dB) 

∆IV-

PSNR 

(dB) 

Y-PSNR 

(dB) 

∆Y-

PSNR 

(dB) 

U-PSNR 

(dB) 

∆U-

PSNR 

(dB) 

V-PSNR 

(dB) 

∆V-

PSNR 

(dB) 

Time per 

one view 

and 

frame 

(sec) 

Memory 

per one 

view 

(GB) 

RDE 40.03 6.84 31.35 5.34 44.91 5.04 44.77 5.32 300.7 7.3 

Diff 

IVDE 

(150k) 
0.23 -0.30 -0.37 -0.47 -0.09 -0.25 -0.09 -0.21 -153.6 -6.7 

IVDE 

(50k) 
-0.09 -0.70 -0.77 -0.41 -0.30 -0.42 -0.31 -0.41 -265.6 -7.1 

Method 

IV-

PSNR 

(dB) 

∆IV-

PSNR 

(dB) 

Y-PSNR 

(dB) 

∆Y-

PSNR 

(dB) 

U-PSNR 

(dB) 

∆U-

PSNR 

(dB) 

V-PSNR 

(dB) 

∆V-

PSNR 

(dB) 

Time per 

one view 

and 

frame 

(sec) 

Memory 

per one 

view 

(GB) 

IVDE 40.27 6.54 30.98 4.87 44.82 4.79 44.67 5.11 147.1 0.5 

IVDE auto 

smoothing 
40.11 6.30 31.00 4.82 44.85 4.76 44.67 4.89 166.4 0.5 



   

RDE IVDE (50k) IVDE (150k) 

Intel Frog 

   

   

Orange Dancing 

   

   

Orange Kitchen 

   

   



   

Orange Shaman 

   

   

Poznan Fencing 

   

   

Technicolor Painter 

   

   

 

 



   

ULB Baby Unicorn 

   

   

ULB Unicorn A 

   

   

ULB Unicorn B 

   

   

 



   

 

4 Overview of software 
The software is written in C++, uses OpenMP parallelization, and does not require any additional libraries. 

Depth estimation for perspective and omnidirectional videos (full 360 only at this moment) is possible. 

Possible input textures are 8-bit, cf 420 and cf 444. The package includes configuration files for all tested 

sequences. 

 

5 Conclusion 

The document provides a brief description of the technique and software IVDE for depth estimation from 

perspective and omnidirectional video, in particular for 3DoF+ and beyond. Full source code of the method 

is provided for the MPEG-I activities.  

The proposal shows very good performance in terms of quality of depth maps and computational 

complexity. Estimated depth maps are also inter-view consistent, what significantly increases the subjective 

quality of virtual navigation. Moreover, the method achieves high quality of depth maps for unified 

configuration files (with only one parameter changed). 

 

6 Recommendations 

We propose: 
 to make this software a new/additional reference software for depth estimation, 

 to change the znear value for ULBBabyUnicorn. 
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