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1. Data Format and System Description 

3D video is represented using the Multiview Video plus Depth (MVD) format, in which a small number of captured 

views as well as associated depth maps are coded and the resulting bitstream packets are multiplexed into a 3D video 

bitstream. After decoding the video and depth data, additional intermediate views suitable for displaying the 3D content 

on an auto-stereoscopic display can be synthesized using depth-image-based rendering (DIBR) techniques. For the 

purpose of view synthesis, camera parameters are additionally included in the bitstream. The bitstream packets include 

header information, which signal, in connection with transmitted parameter sets, a view identifier and an indication 

whether the packet contains video or depth data. Sub-bitstreams containing only some of the coded components can be 

extracted by discarding bitstream packets that contain non-required data. One of the views, which is also referred to as 

the base view or the independent view, is coded independently of the other views and the depth data using a conventional 

HEVC video coder. The sub-bitstream containing the independent view can be decoded by an unmodified HEVC video 

decoder and displayed on a conventional 2D display. Optionally, the encoder can be configured in a way that a sub-

bitstream representing two views without depth data can be extracted and independently decoded for displaying the 3D 

video on a conventional stereo display. The codec can also be used for coding multiview video signals without depth 

data. In that case alternative methods such as Image Domain Warping (IDW) may be used to generate a multiview 

signal. And, when using depth data, it can be configured in a way that the video pictures can be decoded independently 

of the depth data. 

 

 

Figure 1: Overview of the system structure and the data format for the transmission of 3D video. 

 

The basic concept of the system and data format is illustrated in Figure 1. In general the input signal for the encoder 

consists of multiple views, associated depth maps, and corresponding camera parameters. However, as described above, 

the codec can also be operated without depth data. The input component signals are coded using a 3D video encoder, 

which represents an extension of HEVC. At this, the base view is coded using an unmodified HEVC encoder. The 3D 

video encoder generates a bitstream, which represents the input videos and depth data in a coded format. If the bitstream 

is decoded using a 3D video decoder, the input videos, the associated depth data, and camera parameters are 

reconstructed with the given fidelity. For displaying the 3D video on an autostereoscopic display, additional intermediate 

views are generated by a DIBR algorithm using the reconstructed views and depth data. If the 3D video decoder is 

connected to a conventional stereo display instead of to an autostereoscopic display, the view synthesizer can also 

generate a pair of stereo views, in case such a pair is not actually present in the bitstream. At this, it is possible to adjust 

the rendered stereo views to the stereo geometry of the viewing conditions. One of the decoded views or an intermediate 

view at an arbitrary virtual camera position can also be used for displaying a single view on a conventional 2D display. 

The 3D video bitstream is constructed in a way that the sub-bitstream representing the coded representation of the base 

view can be extracted by simple means. The bitstream packets representing the base view can be identified by inspecting 

transmitted parameter sets and the packet headers. The sub-bitstream for the base view can be extracted by discarding all 
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packets that contain depth data or data for the dependent views and, then, the extracted sub-bitstream can be directly 

decoded with an unmodified HEVC decoder and displayed on a conventional 2D video display. 

The encoder can also be configured in a way that the sub-bitstream containing only two stereo views can be extracted 

and directly decoded using a stereo decoder. The encoder can also be configured in a way that the views can be generally 

decoded independently of the depth data. It is also possible to synthesize intermediate view using only the stereo 

sequences as input of the view synthesis. 

A detailed description of the coding scheme is given in sec. 2. Depth-image-based rendering algorithms are described in 

sec. 3. 

2. Coding Algorithm 

In the following, the coding algorithm based on the MVD format, in which each video picture is associated with a depth 

map, is described. The coding algorithm can also be used for a multiview format without depth maps. The video pictures 

and, when present, the depth maps are coded access unit by access unit, as it is illustrated in Figure 2. An access unit 

includes all video pictures and depth maps that correspond to the same time instant. Non-VCL NAL units containing 

camera parameters may be additionally associated with an access unit. It should be noted that the coding order of access 

units doesn't need to be identical to the capture or display order. In general, the reconstructed data of already coded 

access units can be used for an efficient coding of the current access unit. Random access is enabled by so-called random 

access units or instantaneous decoding refresh (IDR) access units, in which the video pictures and depth maps are coded 

without referring to previously coded access units. Furthermore, an access unit doesn't reference any access unit that 

precedes the previous random access unit in coding order. If the picture of the base view in an access unit is an IDR 

picture, the access unit is an IDR access unit. All pictures in an IDR access unit shall be IDR pictures. The IDR picture 

type cannot be used in non-IDR access units. For random access, the IDR picture and the clean random access (CRA) 

picture cannot be simultaneously present in an access unit. 

 

 

Figure 2: Access unit structure and coding order of view components. 

The video pictures and depth maps corresponding to a particular camera position are indicated by a view identifier 

(viewId). All video pictures and depth maps that belong to the same camera position are associated with the same value 

of viewId. The view identifiers are used for specifying the coding order inside the access units and detecting missing 

views in error-prone environments. Inside an access unit, the video picture and, when present, the associated depth map 

with viewId equal to 0 are coded first, followed by the video picture and depth map with viewId equal to 1, etc. A video 

picture and depth map with a particular value of viewId are transmitted after all video pictures and depth maps with 

smaller values of viewId. For the independent view, the video picture is always coded before the associated depth map. 

For dependent views, the video picture maybe coded before or after the associated depth map (i.e., the depth map with 

the same value of viewId). It should be noted that the value of viewId doesn't necessarily represent the arrangement of 
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the cameras in the camera array. For ordering the reconstructed video pictures and depth map after decoding, each value 

of viewId is associated with another identifier called view order index (VOI). The view order index is a signed integer 

values, which specifies the ordering of the coded views from left to right. If a view A has a smaller value of VOI than a 

view B, the camera for view A is located left to the camera of view B. In addition, camera parameters required for 

converting depth values into disparity vectors are included in the bitstream. For the considered linear setup, the 

corresponding conversion parameters consist of a scale factor and an offset. The vertical component of a disparity vector 

is always equal to 0. The horizontal component is derived according to 

dv = ( s * v + o ) >> n, 

where v is the depth sample value, s is the transmitted scale factor, o is the transmitted offset, and n is a shift parameter 

that depends on the required accuracy of the disparity vectors. 

All of the video and depth sequences are associated with a video parameter set. Each video sequence and depth sequence 

is associated with a separate sequence parameter set and a separate picture parameter set. The picture parameter set 

syntax, the NAL unit header syntax, and the slice header syntax for the coded slices haven't been modified for including 

a mechanism by which the content of a coded slice NAL units can be associated with a component signal.  

The video parameter set provides the following information about all component sequences: 

 the view identifier (indicates the coding order of a view);  

 the depth flag (indicates whether video data or depth data are present); 

 the view order index (indicates the location of the view relative to other coded views); 

For the base view, view identifier and depth flag are not present and inferred to be equal to 0.  

The sequence parameter set for all component sequences except the base view has been extended.  These sequence 

parameter sets contain the following additional parameters: 

 an indicator specifying whether camera parameters are present in the sequence parameter set or in the slice 

headers; 

 when camera parameters are present in an sequence parameter set, for each viewId value smaller than the 

current view identifier, a scale and an offset specifying the conversion of a depth sample of the current view to a 

horizontal disparity between the current view and the view with viewId; 

 when camera parameters are present in an sequence parameter set, for each viewId value smaller than the 

current view identifier, a scale and an offset specifying the conversion of a depth sample of the view with 

viewId to a horizontal disparity between the current view and the view with viewId; 

The sequence parameter set for the base view doesn't contain the additional parameters. The sequence parameter sets for 

dependent views include a flag, which specifies whether the camera parameters are constant for a coded video sequence 

or whether they can change on a picture by picture basis. If this flag indicates that the camera parameters are constant for 

a coded video sequence, the camera parameters (i.e., the scale and offset values described above) are present in the 

sequence parameter set. Otherwise, the camera parameters are not present in the sequence parameter set, but instead the 

camera parameters are coded in the slice headers that reference the corresponding sequence parameter set. 

[Ed. (GT): In the current software version view identifier and view order index are used as described above. However, in 

the normative annex the meaning of view identifier and view order index has been swapped. ] 
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Figure 3: Basic codec structure with inter-component prediction (red arrows). 

 

The basic structure of the 3D video codec is shown in the block diagram of Figure 3. In principle, each component signal 

is coded using an HEVC-based codec. The resulting bitstream packets, or more accurately, the resulting Network 

Abstraction Layer (NAL) units, are multiplexed to form the 3D video bitstream. The base or independent view is coded 

using an unmodified HEVC codec. Given the 3D video bitstream, the NAL units containing data for the base layer can 

be identified by parsing the parameter sets and NAL unit header of coded slice NAL units (up to the picture parameter 

set identifier). Based on these data, the sub-bitstream for the base view can be extracted and directly coded using a 

conventional HEVC decoder. 

For coding the dependent views and the depth data, modified HEVC codecs are used, which are extended by including 

additional coding tools and inter-component prediction techniques that employ already coded data inside the same access 

unit as indicated by the red arrows in Figure 3. For enabling an optional discarding of depth data from the bitstream, e.g., 

for supporting the decoding of a stereo video suitable for conventional stereo displays, the inter-component prediction 

can be configured in a way that video pictures can be decoded independently of the depth data. A detailed description of 

the added coding tools is given in the following subsections. 

2.1 Coding of the Independent View 

The independent view, which is also referred to as the base view, is coded using an unmodified HEVC codec. 

2.2 Coding of Dependent Views 

For the dependent views, the same concepts and coding tools are used as for the independent view. However, additional 

tools have been integrated into the HEVC codec, which employ already coded data in other views for efficiently 

representing a dependent view. The additionally integrated tools are described in the following. 

2.2.1 Disparity-compensated prediction 

As a first coding tool for the dependent views, the well-known concept of disparity-compensated prediction (DCP), 

which is also used in MVC, has been added as an alternative to motion-compensated prediction (MCP). At this, MCP 

refers to an inter-picture prediction that uses already coded pictures of the same view, while DCP refers to an 

inter-picture prediction that uses already coded pictures of other views in the same access unit, as it is illustrated in 

Figure 4. 
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Figure 4: Disparity-compensated prediction as an alternative to motion-compensated prediction. 

 

The macroblock syntax and decoding process haven't been changed for adding DCP, only the high-level syntax has been 

modified so that already coded video pictures of the same access unit can be inserted into the reference pictures lists (as 

described in 2.2.1.1). As illustrated in Figure 4, the transmitted reference picture index (R in the figure) signals whether 

an inter-coded blocks is predicted by MCP or DCP. The motion vector prediction is modified in a way that the motion 

vectors of motion-compensated blocks are predicted by only using the neighbouring blocks that also use temporal 

reference pictures, while the disparity vectors of disparity-compensated blocks are predicted by only using the 

neighbouring blocks that also use inter-view reference pictures. 

2.2.1.1 Reference list construction and modification 

For motion-/disparity-compensated prediction, the inter-view reference frames as well as the inter-frame reference 

frames are included in the reference lists (L0, L1). The reference lists are constructed as specified in the following steps.  

1. Update of decoded picture buffer (DPB) 

- The inter-view reference frames, which are already coded frames in the same access unit, are added to the 

current DPB. The status of the inter-view reference frames are signalled as view dependency in Video 

Parameter Set (VPS)  

- The status of view components present in DPB in a view is signalled by the Reference Picture Set (RPS). 

 

Figure 5: Update of decoded picture buffer. 

 

2. Construction of reference lists (L0, L1) 

- The inter-frame references are firstly added into the reference lists (L0, L1) in the same manner as the reference 

list construction in HEVC. After that, the inter-view references are added at the end of the inter-frame 

references. The inter-view references can be included in L0, L1, or both. 
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Figure 6: Construction of reference lists (L0, L1). 

 

3. Modification of reference lists (L0, L1) 

- The constructed reference lists can be modified  based on reference picture list modification syntax table as 

defined in HEVC. 

- One example of the final reference picture lists 0 after modifying the default list is shown in Figure 7. 

 

Figure 7: Modification of reference lists (L0, L1). 

2.2.2 View synthesis based inter-view prediction [Not in SW] 

The encoder and the decoder use the same inter-prediction view synthesis algorithm. Basing on all already coded views, 

a new virtual view is synthesized in the position of the currently processed view. Some regions of newly synthesized 

image are not available because they were occluded in previously coded views. Those disoccluded regions are identified 

and marked on a binary map, named availability map, which controls coding and decoding process. Coder and decoder 

simultaneously use this map to determine, whether given CU is coded or not. Because in a typical case most of the scene 

is the same in all of views, only small parts are disoccluded in subsequently coded views, and thus only small amount of 

CUs is coded.  

 
a)                                                b)                                                   c) 

Figure 8: a) The original side view, b) Disocclusion in the side view, and c) CUs selected by the rd-opt for coding 

in the side view. 

2.2.2.1 Post processing in-loop filtering [Not in SW] 

A final step of view-synthesis prediction is reduction of artefacts in synthesized view. This post-processing consists of 

Depth-Gradient-based Loopback Filterer (DGLF) and Availability Deblocking Loopback Filter (ADLF). 

The first one (DGLF), reduces texture artefacts introduced by DIBR technique in the areas  

of a sudden depth changes. In order to cope that the synthesized image is adaptively filtered with respect to depth 

gradient strengths. Large depth edges impose strong low-pass filtering of the synthesized texture, while flat depth regions 

are not filtered at all. 



3D-HEVC 

  3D-HEVC  13 

The latter (ADLF), reduces artefacts that are generated as a result of block CU-based coding. Shape of coded region not 

necessarily matches shape of binary availability map. This discrepancy is a source of artificial edges between those 

regions (Figure 8 b) and c)) . The ADLF provides smooth transition between coded and synthesized regions by 

interpolating between them. 

2.2.3 Inter-view motion prediction 

The basic concept of the inter-view prediction of motion parameters is illustrated in Figure 9. For the following 

overview, it is assumed that an estimate of a pixel-wise depth map for the current picture is given. Below, it is described 

how such an estimate can be derived. For deriving candidate motion parameters for a current block in a dependent view, 

the maximum depth value d within the associated depth block is converted to a disparity vector. By adding the disparity 

vector to the sample location x, which is in the middle of the block, a reference sample location xR is obtained. The 

prediction block in the already coded picture in the reference view that covers the sample location xR is used as the 

reference block. If this reference block is coded using MCP, the associated motion parameters can be used as candidate 

motion parameters for the current block in the current view. The derived disparity vector can also be directly used as a 

candidate disparity vector for DCP. 

 

 

Figure 9: Basic principle of deriving motion parameters for a block in a current picture based on motion 

parameters in an already coded reference view and an estimate of the depth map for the current picture. 

 

2.2.3.1 Derivation of Disparity Vectors 

The concept of inter-view motion prediction requires a disparity vector to locate a corresponding block of the current 

PU/CU in an already coded picture of the same time instance. Therefore the codec provides four possibilities to derive a 

disparity vector.  

In method 1 the disparity vector is derived from a depth map belonging to a view coded prior to the current view. 

Therefore the complete depth map is warped to the current view. In method 2 a complete low resolution depth map is 

estimated for the current picture without utilizing any coded depth maps. In method 3 coding of a depth map is not 

required as well. However, in contrast to method 2 an estimation of a complete depth map is not performed. The 

disparity is derived from spatial and temporal neighbouring blocks which are using inter-view prediction or from motion 

vectors which are obtained by inter-view prediction. Method 4 combines methods 1 and 3. In contrast to method 1, 

where forward warping is utilized, in method 4 a disparity vector is derived first as done in method 3. This disparity 

vector is then utilized to identify a depth block in an already coded depth view to perform backward warping.  



   3D-HEVC 

14 3D-HEVC 

Methods 1 and 4 require the transmission of depth data as part of the bitstream, and by using one of these methods a 

decoder must decode the depth maps of previously coded views for decoding dependent views. Methods 2 and 3 are also 

applicable if depth maps are not coded inside the bitstream, and when depth maps are coded, the decoding of the video 

pictures is still independent of the depth maps.  

In the following, all four methods by which a suitable disparity vector for the current block can be derived based on 

already transmitted information are described. All methods have been integrated in the codec, and one of the methods 

can be chosen by configuring the encoder (or by macro switches) accordingly.  

2.2.3.1.1 Method 1: Disparity estimate based on already coded depth map [Not in CTC] 

Since the depth map for a reference view is coded before the current picture, the reconstructed depth map is mapped into 

the coordinate system of the current picture for obtaining a suitable depth map estimate for the current picture. In Figure 

10, such a mapping is illustrated for a simple depth map, which consists of a square foreground object and background 

with constant depth. For each sample of the given depth map, the depth sample value is converted into a sample-accurate 

disparity vector. Then, each sample of the depth map is displaced by the disparity vector. If two or more samples are 

displaced to the same sample location, the sample value that represents the minimal distance from the camera (i.e., the 

sample with the larger value) is chosen. In general, the described mapping leads to sample locations in the target view to 

which no depth sample value is assigned (black area in the middle picture of Figure 10). These areas represent parts of 

the background that are uncovered due to the movement of the camera and can be filled using surrounding background 

sample values. Therefore, a hole filling algorithm, which processes the converted depth map line by line, is used. Each 

line segment that consists of successive sample location to which no value has been assigned is filled with the depth 

value of the two neighbouring samples that represents a larger distance to the camera (i.e., the smaller depth value). 

 

 

Figure 10: Mapping of a depth map into another view: (left) original depth map; (middle) converted depth map 

after displacing the original samples; (right) final converted depth map after filling of holes. 

The disparity vector used for inter-view motion or residual prediction of a block of the current picture is finally derived 

based on the maximum value within the associated depth block.  

2.2.3.1.2 Method 2: Depth/Disparity estimate based on coded disparity and motion vectors [Not in CTC] 

The above described method 1 is only applicable if depth maps are included in the bitstream, and by using this method, 

the video pictures (except the base view) cannot be decoded independently of the depth maps. In the following, a method 

for deriving depth map estimates that only uses data that are available in the coded representations of the video pictures 

is described. When using this method, one depth sample is derived for a 4x4 block of luma samples. Consequently, the 

estimated depth maps have 1/4-th of the horizontal and vertical resolution of the luma components. The disparity vector 

used for inter-view motion or residual prediction of a block of the current picture is finally derived based on the 

maximum value within the associated depth block.  

In random access units, all blocks of the base view picture, are intra-coded. In the pictures of dependent views, most 

blocks are typically coded using DCP and the remaining blocks are intra-coded. When coding the first dependent view in 

a random access unit, no depth or disparity information is available. Hence, candidate disparity vectors are derived using 

a local neighbourhood, i.e., by conventional motion vector prediction. But after coding the first dependent view in a 

random access unit, the transmitted disparity vectors are used for deriving a depth map estimate, as it is illustrated in 

Figure 11. Therefore, the disparity vectors used for DCP are converted into depth values and all depth samples that 

correspond to a disparity-compensated block are set equal to the derived depth value. The depth samples of intra-coded 

blocks are derived based on the depth samples of neighbouring blocks; the used algorithm is similar to spatial intra 

prediction. If more than two views are coded, the obtained depth map is mapped into other views using the method 

described above and used as depth map estimate for deriving candidate disparity vectors. During this mapping, the 

calculation of the disparity vectors takes into account that the estimated depth maps have 1/4-th of the horizontal and 

vertical resolution of the luma components. 
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Figure 11: Generation of an initial depth map estimate after coding the first dependent view of a random access 

unit. 

 

The depth map estimate for the picture of the first dependent view in a random access unit is used for deriving a depth 

map for the next picture of the first dependent view. The basic principle of the algorithm is illustrated in Figure 12. After 

coding the picture of the first dependent view in a random access unit, the derived depth map is mapped into the base 

view and stored together with the reconstructed picture. The next picture of the base view is typically inter-coded. For 

each block that is coded using MCP, the associated motion parameters are applied to the depth map estimate. A 

corresponding block of depth map samples is obtained by MCP with the same motion parameters as for the associated 

texture block; instead of a reconstructed video picture the associated depth map estimate is used as reference picture. The 

block of depth samples that is associated with a block of luma samples has 1/4-th of the horizontal and vertical resolution 

of the luma block. In order to simplify the motion compensation and avoid the generation of new depth map values, the 

MCP for depth block doesn't involve any interpolation. The motion vectors are rounded to depth-sample-precision (1/4-

th of the luma sample precision) before they are used. The depth map samples of intra-coded blocks are again determined 

on the basis of neighbouring depth map samples. Finally, the depth map estimate for the first dependent view, which is 

used for the inter-view prediction of motion parameters, is derived by mapping the obtained depth map estimate for the 

base view into the first dependent view. 

 

 

Figure 12: Derivation of a depth map estimate for the current picture using motion parameters of an already 

coded view of the same access unit. 

 

After coding the second picture of the first dependent view, the estimate of the depth map is updated based on actually 

coded motion and disparity parameters, as it is illustrated in Figure 13. For blocks that are coded using DCP, the depth 

map samples are obtained by converting the disparity vector into a depth value. The depth map samples for blocks that 

are coded using MCP are obtained by MCP of the previously estimated depth maps, similar as for the base view. 
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In an optional configuration, new depth values are determined by adding a depth correction. The depth correction is 

derived by converting the difference between the motion vectors for the current block and the corresponding reference 

block of the base view into a depth difference. The depth values for intra-coded blocks are again determined by a spatial 

prediction. The updated depth map is mapped into the base view and stored together with the reconstructed picture. It is 

also used for deriving a depth map estimate for other views in the same access unit. 

 

 

Figure 13: Update of depth map estimate for a dependent view based on coded motion and disparity vectors. 

 

For all following pictures, the described process is repeated. After coding the base view picture, a depth map estimate for 

the base view picture is determined by MCP using the transmitted motion parameters. This estimate is mapped into the 

second view and used for the inter-view prediction of motion parameters. After coding the picture of the second view, 

the depth map estimate is updated using the actually used coding parameters. At the next random access unit, the inter-

view motion parameter prediction is not used, and after decoding the first dependent view of the random access unit, the 

depth map is re-initialized as described above. 

2.2.3.1.3 Method 3: Disparity vector from neighbouring blocks  

The disparity vector is derived from a motion vector of a spatial or temporal DCP neighbouring block or from a disparity 

vector associated with an MCP neighbouring block. Once a disparity motion vector is found, the whole disparity vector 

derivation process terminates.  

First temporal DCP neighbouring blocks are evaluated as specified in section 2.2.3.1.3.2, followed by a check of the 

spatial DCP neighbours, as specified in section 2.2.3.1.3.1. Finally, MCP coded neighbour blocks are searched as 

described in section 2.2.3.1.3.3.  

When no disparity motion vector is found from the neighbouring blocks, a zero disparity vector is used for inter-view 

motion prediction.  
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Figure 14: Location of spatial neighbour blocks 

 

 

 

Figure 15: Location of temporal neighbour blocks in 

temporal candidate pictures 

 

 

2.2.3.1.3.1 Spatial Neighbouring Blocks 

Five spatial neighbouring blocks are used for the disparity vector derivation. They are: the below-left, left, above-right, 

above and above-left blocks of current prediction unit (PU), denoted by A0, A1, B0, B1 or B2, as defined in Figure 14.  

To enable the DV derivation process to be performed in a parallel way two constraints on searched blocks are applied. 

The first constraint is that DV are not derived from neighbouring blocks in the same CUs, when the CU contains two 

PUs. Figure shows an example where for the second PU block A1 is not used for DV derivation .  

 

Figure 16: Example: DV derivation for the second PU, block A1 is omitted to enable parallel processing  

A second constraint is to search only the blocks that are also utilized in the merge scheme in the HEVC base 

specification, when the DV is derived for the derivation of an inter-view merge candidate.  

The checking order of the five spatial neighbouring blocks is: A1, B1, B0, A0 and B2. 

2.2.3.1.3.2 Temporal Neighbouring Blocks 

Up to two reference pictures from current view are treated as candidate pictures for temporal neighbours. The first 

candidate picture is the co-located picture as used for Temporal Motion Vector Prediction (TMVP) in HEVC without 

low delay check. The co-located picture is indicated in a slice header. The second picture is derived in the reference 

picture lists with the ascending order of reference picture indices, and added into the candidate list, given as follows: 

1) A random access point (RAP) is searched in the reference picture lists. If found, the RAP is placed into the 

candidate list for the second picture and the derivation process is completed. In a case that the RAP is not 

available for the current picture, go to step (2). 

A1 
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A0 
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2) A picture with the lowest temporalID (TID) is searched out and placed into the candidate list of the temporal 

pictures as the second entry. 

3) If multiple pictures with the same lowest TID exist, a picture of less POC difference with the current picture is 

chosen.  

As shown in the above description, the second temporal candidate picture is chosen in a way that disparity motion 

vectors can have more chance to be present in the picture. The derivation process of the second candidate picture can be 

done in the slice level and be invoked only once per slice.   

For each candidate picture up to two temporal neighbouring blocks BR and Centre as depicted in Figure 15 are searched. 

The search order is: BR, Centre. The BR block is not considered when it is located below the lower CTU row of the 

current CTU, as e.g. depicted in Figure 18Figure 17. 

.  

Figure 17: The BR temporal block below the lower CTU row is not considered 

2.2.3.1.3.3 Disparity derivation from MCP coded neighbour blocks 

In addition to the DCP coded blocks, blocks coded by motion compensated prediction (MCP) are also used for the 

disparity derivation process. When a neighbour block is MCP coded block and its motion is predicted by the inter-view 

motion prediction, as shown in Figure 18, the disparity vector used for the inter-view motion prediction represents a 

motion correspondence between the current and the inter-view reference picture. This type of motion vector is referred to 

as inter-view predicted motion vector (IvpMv) and the blocks are referred to as DV-MCP blocks in the sequel. The 

motion correspondence is used for the disparity derivation process as explained in the following.  

 

Figure 18: The inter-view predicted motion vector of a MCP coded block. 

 

To indicate whether a blocks is DV-MCP block or not and to save the disparity vector used for the inter-view motion 

prediction, two variables are used: 

- IvpMvFlag 

- IvpMvDisparityX. 

The block whose motion vector is inter-view predicted is identified when the 0th motion parameter candidate of 

MERG/SKIP mode is selected. In that case, the IvpMvFlag and IvpMvDisparityX corresponding to the location of 

TL

CT

BR

Current PU

CTU boundary

V0 (independent view)  (dependent view) 
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current PU are set to 1 and the horizontal component of the disparity vector used for the inter-view motion prediction, 

respectively. 

The disparity vector is derived from SKIP coded DV-MCP blocks. When a block is coded by skip mode, neither mvd 

(motion vector difference) data nor residual data is signalled, which implies that the disparity vector used for SKIP coded 

DV-MCP block well describes the motion correspondence than the disparity vector used for DV-MCP blocks that are not 

SKIP coded. 

If DCP coded block is not found in the spatial and temporal neighbour blocks, then disparity derivation process scans the 

spatial neighbour blocks for DV-MCP compensated in following order: A0, A1, B0, B1, B2. If a neighbour block is a 

SKIP coded DV-MCP block, then the value of IvpMvDisparityX at the neighbour block is returned as the derived 

disparity. The vertical component of the disparity vector is set equal to zero.  

To reduce the amount of memory required for the derivation of the disparity from DV-MCP blocks, blocks B0, B1 and 

B2 are only utilized when they are located in the current CTU. An example for this can be seen in Figure 19. Here only 

spatial neighbour blocks A1 and A0 are utilized.  

 

 

Figure 19: Example: For the derivation of the disparity from DV-MCP neighbouring blocks of the current PU, 

above block B2, B1 and B0 are not used, since they are not located within the current CTU. 

2.2.3.1.4 Method 4: Disparity vector derivation from a depth map of a different view component  

While coding the texture of a dependent view, the decoded depth of the base view is already available. So the disparity 

derivation needed for the coding of the texture of the dependent might be improved by utilizing the depth map of the 

base view. A disparity vector (which might be a better estimate than a disparity vector derived with method 3) can be 

extracted by the following steps: 

1. A disparity vector is the derived by method 3. 

2. The disparity vector is used to locate the corresponding block in the coded depth of the base view. 

3. The depth in the corresponding block in the base depth is assumed to be the "virtual depth block" of the current 

block in the dependent view.  

4. The maximum value depth value of the virtual depth block (or alternatively of the centre and edge samples of the 

virtual depth block) is retrieved. 

5. The maximum depth value is converted to disparity 

An example is depicted in Figure 20. The coded depth map in view 0 is denoted as Coded D0. The texture to be coded is 

T1. For the current block (CB) a depth block in the coded D0 is derived using disparity vector estimated by method 3.  
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Figure 20: Retrieval of the virtual depth block  

2.2.3.2 Usage of Inter-View Motion Parameter Prediction 

In HEVC, two different modes for signalling the motion parameters for a block are specified. In the first mode, which is 

referred to as adaptive motion vector prediction (AMVP) mode, the number of motion hypotheses, the reference indices, 

the motion vector differences, and indications specifying the used motion vector predictors are coded in the bitstream. 

The second mode is referred to as merge mode. For this mode, only an indication is coded, which signals the set of 

motion parameters that are used for the block. The inter-view motion parameter prediction has been added to both 

modes, as will be described in the following. 

Inter-view motion vector prediction in the AMVP mode 

In the adaptive motion vector prediction (AMVP) mode, the number of motion hypotheses, the reference indices 

specifying the used reference pictures, the motion vector differences, and indexes specifying the used motion vector 

predictor are transmitted in the bitstream. For each motion hypothesis, a candidate list of motion vector predictors is 

derived based on the coded reference index. This list includes motion vectors of neighbouring blocks that are associated 

with the same reference index as well as a motion vector predictor which is derived based on the motion parameters of 

the co-located block in a temporal reference picture. For including the inter-view motion parameter prediction, the 

AMVP mode has been extended in a way that an inter-view motion vector predictor is added to the candidate list. It is 

inserted at the first position of the list. Pruning between the inter-view motion vector predictor and spatial motion vector 

predictors is not carried out. 

To determine the inter-view motion vector prediction, a disparity vector and a corresponding block in a reference view 

are derived as described above. If the reference index for the current block refers to an inter-view reference picture, the 

inter-view motion vector predictor is set equal to the corresponding disparity vector. If the current reference index refers 

to a temporal reference picture and the corresponding block uses a motion hypothesis that refers to the same access unit 

as the current reference index, the motion vector that is associated with this motion hypothesis is used as inter-view 

motion vector predictor. In all other cases, a zero motion vector is included in the list of motion vector predictor 

candidates instead of the inter-view motion vector predictor.  

Inter-view motion vector prediction in the merge mode (and skip mode) 

In the merge mode of HEVC (as well as in the skip mode, which represents the merge mode without coding a residual 

signal), basically the same motion parameters (number of hypotheses, reference pictures, and motion vectors) as for a 

neighbouring block are used. If a block is coded in the merge mode, a candidate list of motion parameters is derived, 

which includes the motion parameters of spatially neighbouring blocks as well as motion parameters that are calculated 

based on the motion parameters of the co-located block in a temporal reference picture. The chosen motion parameters 

are signalled by transmitting an index into the candidate list.  

Similarly as for the AMVP mode, the candidate list of motion parameters is extended by a motion parameter candidate 

for MCP (IvMC) that is obtained using inter-view motion prediction. Moreover a motion parameter candidate for DCP 

constructed from the derived disparity (IvDC) is added. The derivation of both additional candidates is described in the 

following. 

For the derivation of the IvMC and the IvDC candidate, a corresponding block in a view component at the same time 

instant as the current view component is utilized. The corresponding block is determined by shifting the position of the 

current block using the disparity vector derived as described above.  

CB

T1

Coded D0

Collocated depth

Estimated disparity vector

Virtual depth



3D-HEVC 

  3D-HEVC  21 

If the corresponding block is coded using MCP it is tested for each motion hypothesis of the current block, whether an 

motion vector and a reference index can be derived for the IvMC candidate. This is the case if a picture is included in the 

reference picture list belonging to the current slice and motion hypothesis with a picture order count equal to the picture 

order count of a reference picture of the corresponding block. When such a picture is found the reference index of this 

picture in the reference picture list belonging to the current slice and motion hypothesis and the motion vector of the 

hypothesis of the corresponding block are used to derive the IvMC candidate.  

To derive the IvDC candidate it is tested for each motion hypothesis of the current block, if the corresponding block is 

located in an inter-view reference picture that is included in the reference picture list belonging to the current slice and 

motion hypothesis. If such a reference picture is found, the IvDC candidate is constructed by using the derived disparity 

as motion vector and the reference index of the found reference picture in the reference picture list of the current slice.  

In the case that all motion parameter candidates are available, the position of the IvMC candidate is the first and the 

position of the IvDC candidate is the fifth in the merge candidate list. Moreover pruning of the list is carried out if the 

IvMC candidate or the IvDC candidate are equal to one of the motion parameter candidates of the spatially neighbouring 

blocks A1 and B1.  

2.2.3.3 Derivation of co-located motion vector candidate 

The availability of the co-located vector is specified in Table 1. For AMVP the co-located motion vector is available for 

motion vector prediction if the current PU utilized the same kind of prediction (inter prediction or inter-view prediction) 

as the co-located PU. Otherwise, the co-located motion vector is not available.  

For merge, when the target reference index specifies a reference picture in the same view, while the motion vector of the 

co-located prediction unit (PU) is related to an inter-view reference picture or vice versa, the temporal motion vector 

prediction (TMVP) candidate might still be available. Therefore an alternative target reference index is derived as 

described in section 2.2.3.3.1.  

In case that both, the current PU and the co-located PU, utilize inter-view prediction, inter-view motion vectors are 

scaled for AMVP and merge as specified in section . 2.2.3.3.2. 

Table 1: The availability of the co-located motion vector 

Availability of co-located vector Prediction type of 

current PU 

Prediction type of  

co-located PU 
Merge AMVP 

Available Available temporal temporal 

Potentially available Not available temporal inter-view 

Potentially available  Not available inter-view temporal 

Available Available inter-view inter-view 

2.2.3.3.1 Derivation of the alternative reference index for merge 

An alternative reference index is derived for merge, in case that the reference picture with the current target reference 

index is a different kind of reference picture as the reference picture of the co-located PU.  

When the reference picture with the current target reference index is an inter-view reference picture, but the reference 

picture of the co-located PU is an temporal reference picture, the current target reference index is modified to be the first 

reference index in the reference picture list of the current block, that specifies an inter-view reference picture.  

When the reference picture with the current target reference index is a temporal reference picture, but the reference 

picture of the co-located PU is an inter-view reference picture, the current target reference index is modified to be the 

first reference index in the reference picture list of the current block, that specifies a temporal reference picture.  

2.2.3.3.2 Scaling of inter-view motion vectors  

The scaling function for inter-view motion vectors is the same as that in temporal MV scaling, but the scaling factors are 

derived differently. In case of temporal MV scaling the scaling factor “tb” is the difference between POC of coding 

block and coding reference block and “td” is the difference between POC of co-located block and this reference block. In 

case of inter-view scaling, the scaling factors “tb” and “td” are calculated with the difference between view order indices 

of each block instead of POCs, Hence:  

 DistScaleFactor = Clip3( –1024, 1023, ( tb * tx + 32 ) >> 6 ) 

tx = ( 16384 + Abs( td / 2 ) ) / td 



   3D-HEVC 

22 3D-HEVC 

where td and tb are derived as:  

 td = Clip3( –128, 127, ColViewOrderIdx –

 ColRefViewOrderIdx ) 

tb = Clip3( –128, 127, CurrViewOrderIdx – CurrRefViewOrderIdx ) 

The variables in the above equations are specified as follows: 

 CurrViewOrderIdx :ViewOrderIdx of current picture 

 ColViewOrderIdx :ViewOrderIdx of co-located picture 

 CurrRefViewOrderIdx :ViewOrderIdx of the picture that is 

referenced by the current picture 

 ColRefViewOrderIdx :ViewOrderIdx of the picture that is 

referenced by the co-located picture 

An example for the scaling of inter-view motion vectors is depicted in Figure 21. The coding block refers to the 

reference picture of V0 and the neighbouring block refers to the picture of V2. The predictive vector from neighbouring 

block is scaled since the difference of view index (V1-V0) between coding block and coding reference block is not equal 

to that (V1-V2) between neighbouring block and this reference block.  

 

Figure 21: Inter-view motion vector scaling in AMVP and TMVP 

[Ed. (GT): In the normative annex the meaning of view identifier and view order index has been swapped. ViewOrderIdx 

here and in software describes a coding order independent value, that might be chosen to represent spatial positions. ]  

2.2.4 Depth-based motion parameter prediction [Not in SW] 

Depth-Based Motion Prediction (DBMP) is a new coding tool for multiview video coding which originates from the idea 

that motion fields of neighbouring views in multiview sequence are highly correlated. DBMP provides an efficient 

representation of motion data in multiview video bitstreams that carry also depth/disparity maps. The motion 

information, such as motion vectors and reference indices, for each pixel of encoded coding unit (CU)  

is directly inferred with use of already coded disparity maps from encoded CUs in the neighbouring views at the same 

temporal instance (Figure 22). This procedure is repeated independently for every pixel of encoded CU. Consequently, 

motion vectors and reference indices for CU are not transmitted in the bitstream but are obtained from the reference view 

at the receiving side.  
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Figure 22: Independent derivation of motion information for each point of encoded CU from corresponding point 

in reference view. 

2.2.5 Inter-view residual prediction 

Similarly as for the inter-view motion prediction, the inter-view residual prediction is based on a disparity estimate for 

the current picture. The same disparity estimate as for the inter-view motion prediction is used. Depending on the 

encoder configuration, the disparity estimate is derived by one of the methods described in sec. 2.2.3.1. A disparity 

vector is determined for a current block and the residual block in the reference view that is referenced by the disparity 

vector is used for predicting the residual of the current block. 

The disparity vector is added to the location of the top-left sample of the current block yielding the location of the top-

left sample of the reference block. Then, similar as for motion compensation, the block of residual samples in a reference 

view that is located at the derived reference location is subtracted from the current residual and only the resulting 

difference signal is transform coded. If the disparity vector points to a sub-sample location, the residual prediction signal 

is obtained by interpolating the residual samples of the reference view using a bi-linear filter. 

Inter-view residual prediction is applied for 2Nx2N PUs that select the temporal inter-view merging candidate of merge 

or skip mode. No explicit signalling is required .  

2.2.6 Illumination compensation (IC) 

A linear illumination compensation model is utilized to adapt luminance and chrominance of inter-view predicted blocks 

to the illumination of the current view. The parameters of the linear model are estimated for each PU using reconstructed 

neighbouring samples of the current block and of the reference block used for prediction.  

[Ed. (GT). Some more information specifying how the linear parameters are computed, which samples are used for 

computation and how the computation is realized using the LUT would be helpful here.] 

To reduce the encoding time, the rate distortion optimized (RDO) selection, whether to enable illumination compensation 

is not carried out for all inter modes. Instead of this, first a RDO selection between IC on and IC off is performed for the 

Merge mode with 2Nx2N partitioning. When IC is chosen in this test, IC is switched on when testing the following inter 

modes.  

The illumination compensation algorithm is also applied to depth data.  

2.2.7 Adjustment of QP of texture based on depth data [Not in SW]  

In order to improve perceptual quality of coded texture, a tool for bit assignment in the texture layer was developed. The 

basic idea is to increase texture quality of objects in the foreground and to increase compression factor (decrease texture 

quality) for objects in the background. The quality is adjusted in coding units (CUs) with use of quantization parameter 

QP that depends on the corresponding depth values. The QP adjustment is done simultaneously in coder and decoder so 

that no additional information is send. Described tool is disabled in the base view to preserve HEVC compatibility. The 

texture QP is modified in the following way: 

              
       

      
    

   
 

 

 

Where     is adjusted    value for a CU with corresponding disparity     .   
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2.3 Coding of Depth Maps 

For the coding of depth maps, basically the same concepts of intra-prediction, motion-compensated prediction, disparity-

compensated prediction, and transform coding as for the coding of the video pictures are used. However, some tools have 

been modified for depth maps, other tools have been generally disabled, and additional tools have been added. 

As a first difference to the coding of video pictures, the inter-view motion and residual prediction as described in 

sec. 2.2.2 and sec. 2.2.4, respectively, are not used for depth coding. Instead, motion parameters are derived based on 

coded data in the associated video pictures as will be described in sec. 2.3.7 below. The other differences are described in 

the following subsections. 

2.3.1 Disabled chrominance coding [Not in SW] 

Depth maps may be coded in 4:0:0 chroma sampling format. 

2.3.2 Non-linear depth representation [Not in SW] 

As alternative representation of depth maps, the depth may be non-linearly scaled as described in the following. 

The human perception of depth depends on absolute distance of viewed objects, therefore the internal depth 

representation is non-linear. Closer objects are represented more accurately than distant ones. Thanks to that, subjective 

quality of synthesized views is improved. 

Internal depth sample values are defined by the following power-law expressions, similar as in the case of well-known 

gamma correction: 

 

Exponent is automatically chosen by the encoder with use of base QP for the depth and sent to decoder in the encoded 

bitstream: 

                                                       

Depth map samples are represented on increased number of bits with use of IBDI (Internal Bit Depth Increase) tool. 

2.3.3 Z-near z-far compensated weighted prediction  [Not in SW] 

Proposed znear-zfar compensation (ZZC) is a new coding tool for multiview video, designed especially for inter-frame 

depth map coding.  

The concept of ZZC exploits the observation that frames from different views and time instances of encoded depth 

sequence may have different znear and zfar parameters. The mentioned znear and zfar parameters describe range of depths 

represented in a gray-scale depth map. If znear and zfar parameters are different for two frames, then given depth value is 

represented with different gray-scale values in those depth maps. Consequently, using one of such depth maps as a 

reference for the other one will result in a poor prediction. 

To overcome this problem, a new ZZC coding tool is proposed. Prior to any inter-frame depth map prediction, each 

depth map that resides on the codec reference picture list is scaled, so that gray-scale depth values in scaled image and 

currently coded image refer to the same depth.  

As a result, depth maps with compensated znear and zfar range are used for prediction. 

Values used for prediction (instead of the original ones) are calculated as follows: 

      
              

              
     

               
              

 

Where LT is compensated disparity in range depth znearT  tozfarT  and LS is original disparity in  depth range znearS and  zfarS. 

2.3.4 Modified motion compensation and motion vector coding 

In contrast to natural video, depth maps are characterized by sharp edges and large regions with nearly constant values. 

The eight-tap interpolation filters that are used for motion-compensated interpolation in HEVC, can produce ringing 

artefacts at sharp edges in depth maps, which are visible as disturbing components in synthesized intermediate views. For 

avoiding this issue and for decreasing the encoder and decoder complexity, the motion-compensated prediction (MCP) as 

well as the disparity-compensated prediction (DCP) has been modified in a way that no interpolation is used. That 
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means, for depth maps, the inter-picture prediction is always performed with full-sample accuracy. For the actual MCP 

or DCP, a block of samples in the reference picture is directly used as prediction signal without interpolating any 

intermediate samples. In order to avoid the transmission of motion and disparity vectors with an unnecessary accuracy, 

full-sample accurate motion and disparity vectors are used for coding depth maps. The transmitted motion vector 

differences are coded using full-sample instead of quarter-sample precision. 

2.3.5 Disabling of in-loop filtering 

The in-loop filters in the HEVC design have been particularly designed for the coding of natural video. For the coding of 

depth maps, these filters are less useful. In order to decrease the encoder and decoder complexity, the in-loop filters have 

been disabled for depth coding. This includes the following filters: 

 the de-blocking filter; 

 the adaptive loop filter (Wiener  filter); 

 the sample-adaptive loop filter. 

2.3.6 Depth modelling modes 

Depth maps are mainly characterized by sharp edges (which represent object borders) and large areas of nearly constant 

or slowly varying sample values (which represent object areas). While the HEVC intra prediction and transform coding 

is well-suited for nearly constant regions, it can result in significant coding artefacts at sharp edges, which are visible in 

synthesized intermediate views. For a better representation of edges in depth maps, four new intra prediction modes for 

depth coding are added. In all four modes, a depth block is approximated by a model that partitions the area of the block 

into two non-rectangular regions, where each region is represented by a constant value. The information required for 

such a model consists of two elements, namely the partition information, specifying the region each sample belongs to, 

and the region value information, specifying a constant value for the samples of the corresponding region. Such a region 

value is referred to as constant partition value (CPV) in the following. Two different partition types are used, namely 

Wedgelets and Contours, which differ in the way the segmentation of the depth block is derived. The depth modelling 

modes are integrated as an alternative to the conventional intra prediction modes specified in HEVC. Similar as for the 

intra prediction modes, a residual representing the difference between the approximation and the original depth signal 

can be transmitted via transform coding. In the following, the approximation of depth blocks using the four new depth 

modelling modes is described in more detail. 

It is differentiated between Wedgelet and Contour partitioning. For a Wedgelet partition, the two regions are defined to 

be separated by a straight line, as illustrated in Figure 23, in which the two regions are labelled with    and   . The 

separation line is determined by the start point   and the end point  , both located on different borders of the block. For 

the continuous signal space (see Figure 23, left), the separation line can be described by the equation of a straight line. 

The middle image of Figure 23 illustrates the partitioning for the discrete sample space. Here, the block consists of an 

array of samples with size       and the start and end points correspond to border samples. Although the separation 

line can be described by a line equation as well, the definition of regions    and    is different here, as only complete 

samples can be assigned as part of either of the two regions. For employing Wedgelet block partitions in the coding 

process, the partition information is stored in the form of partition patterns. Such a pattern consists of an array of size 

      and each element contains the binary information whether the corresponding sample belongs to region   or   . 

The regions   and    are represented by black and white samples in Figure 23 (right), respectively. 

 

 

Figure 23: Wedgelet partition of a block: continuous (left) and discrete signal space (middle) with corresponding 

partition pattern (right). 

 

Unlike for Wedgelets, the separation line between the two regions of a Contour partition of a block cannot be easily 

described by a geometrical function. As illustrated in Figure 24, the two regions    and    can be arbitrary shaped and 

even consist of multiple parts. Apart from that the properties of Contour and Wedgelet partitions are very similar. For 

employing Contour partitions in the coding process, the partition pattern (see example in Figure 24, right) is derived 
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individually for each block from the signal of a reference block. Due to the lack of a functional description of the region 

separation line, no pattern lookup lists and consequently no search of the best matching partition are used for Contour 

partitions. 

 

 

Figure 24: Contour partition of a block: continuous (left) and discrete signal space (middle) with corresponding 

partition pattern (right). 

 

Apart from the partition information, either in form of a Wedgelet or a Contour partition, the second information 

required for modelling the signal of a depth block is the CPV of each of the two regions. For a given partition the best 

approximation is consequently achieved by using the mean value of the original depth signal of the corresponding region 

as the CPV. 

Four depth-modelling modes, which mainly differ in the way the partitioning is derived and transmitted, have been 

added: 

 Mode 1: Explicit Wedgelet signalling; 

 Mode 2: Intra-predicted Wedgelet partitioning; 

 Mode 3: Restricted signalling and inter-component prediction of Wedgelet partitions; 

 Mode 4: Inter-component-predicted Contour partitioning. 

These depth-modelling modes as well as the signalling of the modes and the constant partition values are described in the 

following four subsections. 

2.3.6.1 Mode 1: Explicit Wedgelet Signalization 

The basic principle of this mode is to find the best matching Wedgelet partition at the encoder and transmit the partition 

information in the bitstream. At the decoder the signal of the block is reconstructed using the transmitted partition 

information. 

The Wedgelet partition information for this mode is not predicted. At the encoder, a search over a set of Wedgelet 

partitions is carried out using the original depth signal of the current block as a reference. During this search, the 

Wedgelet partition that yields the minimum distortion between the original signal and the Wedgelet approximation is 

selected. The resulting prediction signal is then evaluated using the conventional mode decision process. 

A fast search of the best matching partition is essential for employing Wedgelet models in the depth coding process. This 

fast search algorithm is further described in section 2.3.6.7.  

2.3.6.2 Mode 2: Intra-predicted Wedgelet Partitions 

The basic principle of this mode is to predict the Wedgelet partition from data of previously coded blocks in the same 

picture, i.e. by intra-picture prediction. For a better approximation, the predicted partition is refined by varying the line 

end position. Only the offset to the line end position is transmitted in the bitstream and at the decoder the signal of the 

block is reconstructed using the partition information that results from combining the predicted partition and the 

transmitted offset. 
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Figure 25: Intra prediction of Wedgelet partition (blue) for the scenarios that the above reference block is either 

of type Wedgelet partition (left)or regular intra direction(right). 

 

The prediction process of this mode derives the line start position and the gradient from the information of previously 

coded blocks, i.e. the neighbour blocks left and above of the current block. Note that for some blocks one or both of the 

neighbouring blocks are not available. In such a case the processing for this mode is carried out with setting the missing 

information to meaningful default values. As illustrated in Figure 25 two main prediction methods have to be 

distinguished: The first method covers the case when one of the two neighbouring reference blocks is of type Wedgelet, 

shown in the example in Figure 25, left. The second method covers the case when the two neighbouring reference blocks 

are not of type Wedgelet, but of type intra direction, which is the default intra coding type, shown in the example in 

Figure 25, right. 

If the reference block is of type Wedgelet, the prediction process works as follows: The principle of this method is to 

continue the reference Wedgelet into the current block, which is only possible if the continuation of the separation line of 

the reference Wedgelet actually intersects the current block. Therefore, it is first checked whether it is possible to 

continue the reference Wedgelet. In case the check is positive, the start position   and the end position    are predicted 

by calculating the intersection points of the continued line with block border samples. 

If the reference block is of type intra direction, the prediction process works as follows: First, the gradient is derived 

from the intra prediction direction. As the intra direction is only provided in the form of an abstract index, a mapping or 

conversion function is defined that associates each intra prediction mode with a gradient. Second, the start position    is 

derived from information that is also available at the decoder, namely the adjacent samples of the left and above 

neighbouring block, by selecting the sample position with the maximum slope. Finally, the end position    is calculated 

from the start point and the gradient. 

The line end position offset for refining the Wedgelet partition is not predicted, but searched within the estimation 

process at the encoder. For the search, candidate partitions are generated from the predicted Wedgelet partition and an 

offset value for the line end position     , as illustrated in Figure 25. By iterating over a range of offset values and 

comparing the distortion of the different resulting Wedgelet partitions, the offset value of the best matching Wedgelet 

partition is determined using a distortion measure. 

2.3.6.3 Mode 3: Restricted signalling and inter-component prediction of Wedgelet partitions  

The basic principle of this mode is to signal a Wedgelet partition as index to a restricted set of Wedgelet partitions. To 

restrict the set two methods can be applied. The first method predicts probable Wedgelet partitions from a texture 

reference block, namely the co-located block of the associated video picture. This type of prediction is referred to as 

inter-component prediction. Unlike temporal or inter-view prediction, no motion or disparity compensation is used, as 

the texture reference picture shows the scene at the same time and from the same perspective.  
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Figure 26: Prediction of Wedgelet (blue) and Contour (green) partition information from texture luma reference. 

 

The prediction of a Wedgelet partition pattern from the texture reference is illustrated in the top row of Figure 26. It can 

be observed that the luma intra direction correlates with the edge direction in the depth data, therefore the set of possible 

Wedgelet partitions can be restricted utilizing this information as described in section 2.3.6.6.  

The second method can be used when the co-located texture block is not intra coded. In this case the possible Wedgelet 

partitions are restricted to a coarse subset of partitions utilized in Mode 1. The search for the Wedgelet partition is carried 

out as specified in section 2.3.6.7, however the refinement step as described there is not applied for Mode 3..  

2.3.6.4 Mode 4: Inter-component prediction of Contour partitions 

The basic principle of this mode is to predict a Contour partition from a texture reference block by inter-component 

prediction. Like for the inter-component prediction of a Wedgelet partition pattern, the reconstructed luminance signal of 

the co-located block of the associated video picture is used as a reference, as illustrated in the bottom row of Figure 26. 

In contrast to Wedgelet partitions, the prediction of a Contour partition is realized by a thresholding method. Here, the 

mean value of the texture reference block is set as the threshold and depending on whether the value of a sample is above 

or below the sample position is marked as part of region    or    in the resulting Contour partition pattern. 

2.3.6.5 Constant partition value coding 

The method for CPV coding is the same for all four modes introduced above, as it does not distinguish between partition 

types, but rather assumes that a partition pattern is given for the current depth block. As illustrated in Figure 27, three 

types of CPVs are differentiated: original, predicted, and delta CPVs. 

 

 

Figure 27: CPVs of block partitions: CPV prediction from adjacent samples of neighbouring blocks (left) and 

cross section of block (right), showing relation between different CPV types. 

 

The cross section of the block in Figure 27, right, schematically shows that the original CPVs are calculated as the mean 

value of the signal covered by the corresponding region. Although these values lead to the best approximation for the 

given partition, they are not available at the decoder as they require the original signal. Therefore prediction of CPVs is 

introduced. These predicted CPVs are derived from information that is also available at the decoder, namely the adjacent 

samples of the neighbouring left and top block (or some of them for large PU sizes), as illustrated in Figure 27, left, 

where the green and light green line segments highlight the mapping of adjacent samples to the partitions. Again, the 

predicted CPVs are calculated as the mean value of the corresponding sample values. Depending on the similarity 

between original signal of the block and adjacent samples, the predicted and original CPVs may differ significantly. This 

difference is referred to as delta CPVs. By calculating the delta CPVs at the encoder and transmitting them in the bit 

stream, it is possible to reconstruct the CPVs at the decoder.  
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Depending on the Intra Mode of the current prediction unit, delta CPVs can be determined and signalled in two different 

ways. Quantized signalling is used for region boundary chain coding as described in section 2.3.7. Signalling without 

quantization is applied for the DMM modes described in this section.  

Quantized signalling  

Although the distortion of the reconstructed signal is considerably reduced by the delta CPVs, the benefit of this 

approach is delimited by the additional bit rate required for transmitting the delta CPVs. Therefore, a linear quantization 

is introduced for the delta CPVs. This method is also used in transform coding and the step size of the quantization is set 

as a function of the QP. The delta CPVs are linearly quantized at the encoder and de-quantized before reconstruction at 

the decoder. 

In case the distortion is not measured for the original depth, but for synthesized views, the delta CPV derivation process 

is extended by a minimum distortion search, which iterates over all possible delta CPV combinations for the two 

partitions. For the sake of efficient processing and signalling the range of tested values is limited. The search results in 

the combination of delta CPVs that causes the minimum distortion in synthesized views and for transmission these 

values are finally quantized. 

Signalling without quantization 

Compared to quantized signalling the search strategy for offset estimation in DMM modes of the current deltaDC 

scheme is modified to obtain the coding gain of using un-quantized partition offset values without suffering from the 

considerable increase in encoder complexity. 

The optimized search strategy basically consists of a coarse search and a refinement step. In more detail the search works 

as follows: Initially the distortion of using the partition values that are calculated as the mean value of the original 

sample values covered by the corresponding region is determined. For SDC as described in section 2.3.8 the offset 

between these values and the predicted partition values is simply transmitted without a VSO-based minimum distortion 

search. However, for DMM modes the search tests all combinations of offset values in a certain range around the 

predicted and original partition values. The limits of the search range start from an offset value of 0 and the upper limit is 

restricted by the actual range of depth values. First, a coarse search is carried out, testing offset values at intervals of 4. 

For each tested combination of offset values the distortion is compared to the initial distortion achieved with the original 

partition values. Only if at least one of the coarse offset combinations leads to a smaller distortion than the original 

partition values, the refinement step is carried out for the best coarse combination. The refinement step simply consists of 

testing all offsets in the range of [-3, 3] around the best coarse offset combination. 
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Figure 28: Optimized search strategy for non-quantized partition offset values. 

2.3.6.6 Co-located Texture Luma Block intra direction constraint  

For DMM mode 3, the intra direction of the co-located texture luma block can be utilized to constrain the set of possible 

Wedgelet partitions and the Wedgelet search at the encoder to most probable Wedgelet directions. Basically, the 

wedgelet search consists of two parts: first, for each intra direction, a restricted Wedgelet list is initialized with Wedgelet 

patterns sharing the similar directionality of the intra direction, second, during the Wedgelet search, only the Wedgelet 

patterns included in the Wedgelet list for the intra direction of co-located texture luma block are considered. For 

transmission the found Wedgelet partition is then signalled as an index to the restricted Wedgelet list.  

Wedgelet list generation for each intra direction. To generate the Wedgelet list, each Wedgelet pattern index idxW is 

first mapped to an intra direction widx by applying the following steps: 

 For each intra direction i from 2 to 34, Di is calculated as Di = | Vi (Xs-Xe) - Hi (Ye-Ys) |, where Hi and Vi are 

obtained from Table 1, (Xs, Ys) and (Xe, Ye) indicate the start and end point position of the Wedgelet pattern, 

respectively. 

 The Wedgelet pattern index idxW is mapped to the intra direction widx which minimizes D among all intra 

directions.  

Table 1: Values of H and V for angular intra directions 

intra direction 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

H 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 

V 32 26 21 17 13 9 5 2 0 -2 -5 -9 -13 -17 -21 -26 -32 

intra direction 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  

H 26 21 17 13 9 5 2 0 2 5 9 13 17 21 26 32  

V -32 -32 -32 -32 -32 -32 -32 32 32 32 32 32 32 32 32 32  

Then for each intra direction pidx a Wedgelet list is constructed that includes all the Wedgelet patterns with mapped intra 

direction widx satisfying | widx - pidx | ≤ 1.  

Wedgelet search. The intra direction of co-located texture luma block is first derived as pidx, then only the Wedgelet 

patterns in the Wedgelet list of intra direction pidx is used in the Wedgelet search function as described in section 

2.3.6.7, thus large portion of Wedgelet searches are skipped.  

2.3.6.7 Coarse wedgelet search with refinement step 

The coarse search with refinement step is used at the encoder side for DMM mode 1 and DMM mode 3. The search 

method basically consists of three steps: first, the wedgelet pattern list is initialized. In the second step a coarse subset of 

the Wedgelet pattern list is searched for the minimum distortion partition. The resulting Wedgelet partition is refined in 

the third step.  

Wedgelet pattern list initialization. The Wedgelet pattern lists are generated during encoder and decoder initialization.  

For this purpose, the patterns for all possible combinations of start and end point positions are generated and stored in a 

lookup table for each block size prior to the coding process. The Wedgelet pattern list contains only unique patterns. The 

resolution for the start and end positions used for generating the Wedgelet patterns depends on the block size. For 16x16 

and 32x32 blocks, the possible start and end positions are restricted to locations with an accuracy of 2 samples. For 8x8 

blocks, full-sample accuracy is used, and for 4x4 blocks, half-sample accuracy is used 

A coarse subset of Wedgelet patterns are marked by a flag during the list generation process. The subset contains the 

Wedgelets for every second start and end position (see Fig. 1, left). Furthermore, a Wedgelet node is derived for each 

Wedgelet of the coarse subset, containing up to eight references to refinement Wedgelets (see Fig. 1, right). 
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Figure 29: Coarse subset of Wedgelet separation line start/end positions (left) and Wedgelet node with 

refinements (right). 

Search function. The following search algorithm is applied to find the Wedgelet within the pattern list, that provides the 

minimal distortion: In a first step the minimum distortion Wedgelet pattern is searched for the coarse subset by iterating 

over the Wedgelet node list and testing the referenced pattern. In a second step the Wedgelet partition found in the first 

step is refined. For this purpose the minimum distortion Wedgelet pattern is searched from the up to eight refinement 

patterns referenced in the corresponding node.  

2.3.6.8 Mode selection 

In the encoding process, for an intra-coded CU, one of the described depth modelling modes or one of the conventional 

intra prediction modes is selected. If a depth modelling mode is selected, the selected mode and the associated prediction 

data have to be signalled in the bitstream in addition to a syntax element that specifies the usage of a depth modelling 

mode. The following four depth modelling modes are defined:  

 Wedgelet_ModelIntra: Intra modelling of Wedgelet block partition 

 Wedgelet_PredIntra: Intra prediction of Wedgelet block partition 

 Wedgelet_PredTexture: Inter-component prediction of Wedgelet block partition 

 Contour_PredTexture: Inter-component prediction of Contour block partition 

Each of the four modes can be applied with or without delta CPVs, resulting in eight different mode_IDs for signalling 

the decoder, which type of processing has to be applied for prediction and reconstruction of the block. 

2.3.6.9 Signalling in the bitstream 

The depth modelling modes are implemented as an additional set of block coding modes into the intra path of the 3D 

video codec. Therefore, an additional flag prior to the mode information is transmitted in the bitstream, signalling 

whether a block partition mode is used or not. In case this flag is not set, normal intra mode signalling follows. 

Otherwise, a mode ID is signalled, which specifies the actual block partition mode and if delta CPVs are also transmitted 

or not. The number of bins required depends on the decision of the mode pre-selection methods, ranging from three bins, 

if all eight modes are enabled, to one bin, if the number of modes is reduced to two due to pre-selection decisions 

described in sec. 0. 

Mode Wedgelet_ModelIntra: For this mode the Wedgelet partition information is explicitly signalled in the bitstream by 

the index of the corresponding pattern in the Wedgelet pattern lookup list. The index is signalled with a fixed number of 

bins. The number of bins used for transmitting the index is given by the size of the list of possible Wedgelet patterns. 

Mode Wedgelet_PredIntra: For this mode only the refinement of the Wedgelet partition in terms of the line end position 

offset is signalled in the bitstream. A first bin indicates whether the offset is zero or not. If the offset is not zero,   
 additional bins follow for signalling offset values in the range    , where the first bin represents the sign and the 

remaining   bins the absolute value of the offset.  is set equal to 2. 

Mode Wedgelet_PredTexture: For this mode the Wedgelet partition information is explicitly signalled in the bitstream 

by the index of the corresponding pattern in a restricted Wedgelet pattern lookup list. The index is signalled with a fixed 

number of bins. The number of bins used for transmitting the index is given by the size of the list of possible Wedgelet 

patterns. 

Mode Contour_PredTexture: For this mode no additional signalling regarding the partition information is required. 

Delta CPVs: In case the delta CPVs are transmitted (which is signalled by the transmitted mode ID), the two quantized 

values are signalled in the bitstream consecutively. For each CPV, a bin string consisting of the absolute value and the 

sign is transmitted. The sign is coded as a single bin, and the absolute value is coded using a truncated unary code (with 

13 bins in the unary part and an exponential golomb code suffix). 

2.3.7 Region boundary chain coding  

The region boundary chain coding mode partitions the block into two regions by signalling the region boundaries with 

chain codes. The region boundary chain coding consists of four steps. 

Step 1: Find internal edges 

The internal edges inside a depth-map block are calculated in the encoder. The step consists of several procedures. 

i) Calculate differences between vertically and horizontally adjacent pixels. 

ii) Mark as edge candidates if the difference is greater than the threshold. 

iii) Eliminate the edge candidates which have smaller differences than neighbouring edge candidates. 

iv) Connect unlinked edges if necessary. 

v) Prune unconnected edges. 

vi) Check whether the block consists of two regions exactly. Otherwise, the method will not be applied further. 
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Step 2: Code the edges using chain codes 

The edges are encoded by using chain codes. First, an edge starts from the block boundaries. Then, the next edge is 

chosen as an edge connected to the current one. The final edge ends at the boundaries. To construct chain codes, it 

defines seven traverse types (0, 45, -45, 90, -90, 135, and -135 degree) and their edge patterns. Figure 30 shows the 

patterns when the previous pixel is the left one (grey arrow). The patterns of other directions differ from the figure but 

can be constructed in the same manner. 

 

 

Figure 30: Reconstructed edge using the relationship between previous and current directions 

Step 3: Convert the chain codes into bitstream syntax 

The region boundaries are expressed as a set of an edge starting point and the traverse codes.  

Step 4: Calculate the predictors and fill them into the block 

After the regional average values are chosen as the predictors for partitioned regions, the method for constant partition 

value (CPV) coding described in 2.3.6.5 can be applied to the mean value of the signal covered by the corresponding 

region.  

2.3.7.1 Signalling in the bitstream 

The region boundary chain coding modes are implemented as an additional set of block coding modes into the intra path 

of the 3D video codec. When rem_intra_luma_pred_mode is equal to 31, an additional flag is transmitted in the 

bitstream, signalling whether a region boundary chain coding mode is used or not.  

Two syntax elements (edge_start_left_flag and edge_start_position) are used to determine the starting point. And the 

traverse codes are signalled with num_edge_codes_minus1 and edge_code as described in Figure 31. The edge_code is 

constructed to have a different code word length according to the frequency of traverse types.  

In case the CPVs are transmitted (which is signalled by edge_dc_flag ), two quantized values are signalled in the 

bitstream consecutively. For each CPV, a bin string consisting of the absolute value and the sign is transmitted. The sign 

is coded as a single bin, and the absolute value is coded using a truncated unary code (with 13 bins in the unary part and 

an exponential golomb code suffix). 

 

: previous traverse : current traverse : reconstructed edge 

0˚ 45˚ -45˚ 

135˚ -90˚ 90˚ -135˚ 
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Figure 31: Example of region boundary chain coding 

 

2.3.8 Simplified depth coding 

The Simplified Depth Coding (SDC) approach is an alternative intra coding mode. Whether SDC is used is signalled by 

a SDC flag at CU level. For SDC the depth block is intra predicted by a conventional intra mode or depth modelling 

mode 1. The partition size of SDC coded CU is always 2Nx2N and therefore not signalled in the bitstream. Moreover the 

residual is not coded as quantized transform coefficients but one or two constant residual values are signalled.  

In summary following information are signalled for SDC-coded blocks: 

1. The type of segmentation/prediction of the current block. Possible values are 

a. DC (1 segment) 

b. DMM Mode 1 – Explicit Wedgelets (2 segments) 

c. Planar (1 segment) 

2. For the DMM mode, additional prediction information is coded, as described in  section 2.3.6 

3. For each resulting segment, a residual value (in the pixel domain) is signalled in the bitstream 

Before coding, the residual values are mapped to values, which are present in the original, uncompressed depth map by 

using a Depth Lookup Table (DLT). Consequently, residual values can be coded by signalling only the index into this 

lookup table, which reduces the bit depth of residual magnitudes. This mapping table is transmitted to the decoder for the 

inverse lookup from index to valid depth value. 

The advantage of using this lookup table is the reduced bit depth of the residual index for sequences with reduced depth 

value range (e.g. all estimated depth maps where not all depth values are present). 

At the encoder side the Residual index       to be coded into the bitstream, is given by  

                         

with       denoting original depth value,       denoting the predicted depth value, and      denoting the Index Lookup 

Table and        denoting the number of valid depth values.  

The computed residual index       is then coded with a significance flag, a sign flag and with              bits for the 

magnitude of the residual index. 

2.3.8.1 Depth Lookup Table 

The Depth Lookup Table utilizes the property of the depth map, that the full available depth range of    values is not 

utilized. Only a small amount of different depth levels occur due to strong quantization. In the encoder, a dynamic depth 

lookup-table is constructed by analysing a certain number of frames (e.g. one intra period) of the input sequence. This 

depth lookup-table is used during the coding process to reduce the effective signal bit-depth of the residual signal. 

 

30 30 60 60 

25 35 58 60 

30 63 60 60 

30 65 60 60 

Original depth-map Step 1: find internal edges 

(with threshold = 20) 

30 30 60 60 

25 35 58 60 

30 63 60 60 

30 65 60 60 

30 30 60 60 

25 35 58 60 

30 63 60 60 

30 65 60 60 

Step 2: construct chain codes 

Starting point : [2,0] 

Chain code : 0˚, -45˚, 45˚ 

Step 3: convert codes into syntax 

edge_start_left_flag = 0 

edge_start_position = 10 

edge_count_minus_1 = 010 

edge_code[0] = 0 

edge_code[1] = 110 

edge_code[2] = 10 
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2.3.8.1.1 Construction of the depth lookup table 

In encoder reads a pre-defined number of frames from the input video sequence to be coded and scans all samples for 

available depth map values. During this process a mapping table is generated that maps depth values to valid depth 

values based on the original uncompressed depth map.  

The Depth Lookup Table     , the index Lookup Table     , the Depth Mapping Table      and the number of valid 

depth values        are derived by the following algorithm, that analyses the depth map     

 

1. Initialization 

 boolean vector            for all depth values   

 index counter     

2. Process each pixel position   in    for multiple time instances  : 

 Set               to mark valid depth values 

3. Count number of      values in              

4. For each   with           : 

 Set        

 Set        

 Set        

       

5. For each   with            : 

 Find                  and             

 Set         

6. Set            

2.3.9 Motion parameter inheritance 

The basic idea behind the motion parameter inheritance (MPI) mode is that the motion characteristics of the video signal 

and its associated depth map should be similar, since they are both projections of the same scenery from the same 

viewpoint at the same time instant. Therefore, in order to enable efficient encoding of the depth map data, a texture 

candidate for the merge mode in depth coding that allows the inheritance of motion parameters from the texture signal 

has been introduced. The derivation of the texture candidate for depth is depicted in figure Figure 32. The motion 

parameters of the corresponding texture block are added as candidate to the merge list of the PU in the depth picture. 

 

 

Figure 32: The derivation of corresponding texture block 

Since the motion vectors of the video signal have quarter-sample accuracy, whereas for the depth map signal only full-

sample accuracy is used, in the inheritance process the motion vectors are quantized to their nearest full-sample position.  

[Ed. (GT): This is currently not reflected in draft, but might be added:  

Corresponding 
texture picture Depth picture

.
Current PU

.

. Corresponding
texture block
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Since, when using MPI, not only the partitioning and the motion vectors, but also the reference picture indices are 

inherited from the video signal, it has to be ensured, that the depth maps that correspond to the video reference pictures 

are also available in the reference picture buffer for the depth map signal. ] 

2.3.10 Depth Quadtree Prediction 

Depth quadtree prediction performs a prediction of the depth quadtree from the texture quadtree. It is applied in inter 

slices that do not belong to random access pictures. The partitioning of the depth is limited to the same level as the 

partitioning of the texture. For a given CTU, the quadtree of the depth is linked to the collocated CTB quadtree in the 

texture, so that a given CU of the depth cannot be split more than its collocated CU in the texture. Moreover, when the 

texture is split in 2NxN (or Nx2N), partitioning to 2NxN, Nx2N, or NxN is not performed for depth. The possible 

partitioning is depicted in Figure 33.. Corresponding split flags and partition sizes for depth depending on the split flags 

and partition sizes of texture are summarized in Table 2. 

 

 

Figure 33: Texture partitions and corresponding possible depth partitions  

Table 2: Split flags and partition sizes of depth depending on split flags and partition sizes of texture  

Texture 

SplitFlag 

Texture  

PartSize 

Depth  

SplitFlag 

Depth 

PartSize 

Residual Depth 

SplitFlag 

Residual Depth  

PartSize 

1 - 1 - 1 - 

1 - 0 0, 1, 2 or 3 0 0, 1, 2 or 3 resp. 

0 0,1, 2 or 3 0 0 - - 

- 0, 1 or 2 - 0 - - 

- 3 - 0, 1, 2 or 3 - 0,1, 2 or 3 resp. 

SplitFlag: 0 = no split, 1 = split; PartSize: 0 = 2Nx2N, 1 = Nx2N, 2 = 2NxN, 3 = NxN. 

2.4 Encoder Control 

For mode decision and motion estimation, a Lagrangian technique by which a cost measure       is determined for 

each candidate mode or parameter, and the mode or parameter with the smallest cost measure is selected. is the 

distortion that is obtained by coding the considered block in a particular mode or with a particular parameter,   is the 

number of bits that are required for representing a block in a given mode or that are required for coding a given 

parameter, and   is the Lagrangian multiplier that is derived based on the used quantization parameter. As measure for 
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the distortion, the sum of squared differences (SSD) or the sum of absolute differences (SAD) between the original and 

the reconstructed sample values is used (for the coding of depth maps this measure was modified as described below). 

For the coding of depth maps, basically the same decision process is used. However, the distortion measure has been 

replaced with a measure that considers the distortion in synthesized intermediate views. This technique is described in 

the following subsection. 

2.4.1 View Synthesis Optimization 

The geometry information given by depth data is exploited only indirectly in the rendering process. Hence, the lossy 

coding of depth data causes distortions in the synthesized intermediate views. The depth map itself is not visible for a 

viewer. The efficiency of depth coding is improved by considering this property. As a consequence, the distortion 

measure for the mode decision process for depth maps is modified in a way that a weighted average of the synthesized 

view distortion and the depth map distortion. To obtain a measure of the synthesized view distortion, two different 

metrics  are applied in RDO.  

The first metric, discussed in section 2.4.1.1, is the synthesized view distortion change (SVDC). The computation of the 

SVDC requires the usage of rendering functionalities in the encoding process. Since computational complexity is a 

critical factor in distortion calculation, a method, which is also referred to as renderer model, has been utilized that 

allows minimal re-rendering of parts of the synthesized view that are affected by a depth distortion. For this, a special 

renderer is included in the encoder, which supports the basic functionalities, shared by most rendering approaches, like 

sub-pixel accurate warping, hole filling and view blending. 

The second metric, presented in section 2.4.1.2, is a model based synthesized view distortion estimation without 

rendering. Basic idea of this metric is to derive an estimate for the synthesized view distortion by weighting the depth 

distortion with a factor derived from the absolute value of the derivation of texture view in horizontal direction.  

The integration of both metric in the encoder control is presented in sections 2.4.1.4 and 2.4.1.5.  

2.4.1.1 Synthesized View Distortion Change (SVDC) 

2.4.1.1.1 Definition of the SVDC  

Since the encoding algorithm operates block-based, the mapping of depth distortion to the synthesized view distortion 

must be block-based as well. Moreover, the sum of partial distortions (of sub-blocks) must be equal to the overall 

distortion of a block in order to enable an independent distortion calculation for all partitions of a subdivided block, as 

hierarchical block structures are used in HEVC. 

A relationship between a depth map   and a synthesized texture   
 is created by the used view synthesis approach. 

However, disocclusions and occlusions prevent a bijective mapping of the distorted areas in depth maps to distorted 

areas in the synthesized views. For example, areas in the synthesized view, which depend on depth data of a considered 

block, can become visible due to the distortions in other depth blocks; or vice versa, the distortion of a depth block has 

no effect on the synthesized view, since the block is occluded there. Hence, an exact mapping between the distortion of a 

block of the depth data and an associated distortion in the synthesized view is not possible considering only the depth 

data within a currently processed block.  

For resolving this issue, the change of the overall distortion in a synthesized view depending on the change of the depth 

data within a block   is determined, while simultaneously also considering depth data outside the block  . For this 

purpose, the synthesized view distortion change (SVDC) is defined as distortion difference   between two synthesized 

textures   
 and    , 

 

 
                                  

 

       

     
                    

 

       

 (1) 

       denotes a reference texture rendered from original video and depth data.  represents the set of all samples in the 

synthesized view. To illustrate how the textures   
 and    

  are obtained, the SVDC definition from eq. (1) is also depicted 

in Figure 34.   
 denotes a texture rendered from a depth map    consisting of encoded depth data in already encoded 

blocks and original depth data in the other blocks. The current block  , for which the distortion has to be computed, 

contains original depth data as well. For the synthesis of the texture    
  a depth map   is used that differs from the depth 

map   in that it contains the distorted depth data also for the current block  . 
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Figure 34: Definition of the SVDC related to the distorted depth data of the block   depicted by the hatched area 

in the bottom branch; VS denotes the view synthesis step and SSD stands for sum of squared differences. 

 

The SVDC definition above is motivated by three reasons. First, an exact distortion measure is provided, therefore the 

overall distortion of the synthesized view and thereby disocclusions and occlusions are considered. Second, the measure 

is related to a block and third partial distortions are additive. For the latter two reasons, the change of the synthesized 

view distortion caused by a change of a depth block is employed instead of the total synthesized view distortion itself. 

Figure 34 shows the SVDC definition for the extrapolation of virtual views from one input view only. However, the 

encoder side view synthesis algorithm supports also the interpolation of the texture   
  from a left and a right view. 

Hence, rendering requires a left      and a right      depth map. To extend the SVDC computation to this two view case, 

the original depth map of the second view can be used when encoding the first depth map. Subsequently the first already 

encoded depth map can be utilized for the SVDC computation when encoding the second depth map. 

2.4.1.1.2 Efficient Computation of the SVDC 

A straightforward approach to compute the SVDC would be the direct implementation of eq. (1). However, this would 

require the complete rendering of the synthesized textures   
  and    

  and a rendering of a whole view is computational 

too complex to be feasible in a rate-distortion optimization process. To overcome this problem, a method which enables 

a fast computation of the SVDC and is integrated in the encoder. 

Renderer Model 

The renderer model provides three basic functionalities to the encoder: Initialization, partial re-rendering, and SVDC 

calculation.  

 The initialization of the renderer model is carried out before the encoding of a depth map is started. In the 

initialization process, the complete synthesized view is rendered using the original input depth maps and the 

input textures. The input depth maps are stored as the renderer models depth states      and      and the 

rendered view as the synthesized view state   
 . Intermediate variables used in the rendering process are also 

stored to enable a fast re-rendering.  

 Partial re-rendering is carried out to update the renderer model when the encoding of a block   is finished and 

the final depth data for the block is known. For this purpose, the reconstructed depth data and the position of 

block   are signalled to the renderer model. The renderer model changes the block in the depth state      or 

    from original to coded data and re-renders only local parts of the synthesized view state   
  and the 

intermediate variables that are affected by the change of the depth data. Thus, the renderer model is transferred 

to a state that is required to compute the SVDC for blocks of the depth data encoded subsequently.  

 For the computation of the SVDC, the position and the depth data of a block   to be tested are provided to the 

renderer model. The renderer model then computes the SVDC as defined in eq. (1). Here, re-rendering followed 

by the computation of the sum of squared distortions SSD is carried out. However, instead of considering all 

positions         again only positions affected by the depth change are considered. Note that the re-rendering 

carried out here does not modify any state variables of the renderer model. Hence, the SVDC can be computed 

for multiple depth candidates successively without the need to re-render with original data in block .  

Re-Rendering and Error Calculation Algorithm 

The main objective of the algorithm is a computational low complex distortion calculation or state transition, hence a low 

complex re-rendering of the parts of the synthesized view that are affected by a depth change in one of the input depth 

maps. 

Conventional view synthesis consists of multiple steps such as warping of the input samples, interpolation at sub pixel 

positions, blending with a second view obtained similarly, and hole filling. Typically these steps are executed as 
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independent algorithms that are applied successively using the results of the previous step. To enable fast re-rendering of 

only parts of the synthesized view, all steps are combined in single algorithm that can be applied pixel-wise to the input 

depth map. This allows a region-wise processing of the depth map, and thus an update of related regions in the 

synthesized view. 

This process is illustrated in Figure 35 for an example for rendering from a left view to the right. Rendering is applied 

row wise, hence all depicted signals represent one row of input, intermediate, or output data. The single signals are from 

bottom to top: the left input texture     , a shifting chart, the texture synthesized from left      the texture synthesized 

from right      , the blended texture   , and the reference texture       . The arrows denote the relationship between the 

single samples or sample positions of the signals. Dots shown in the shifting chart represent samples from the input view. 

Their horizontal position is equal to their position   in the synthesized view. The vertical position shows their disparities. 

Since the depth is monotonically decreasing with increasing disparity, the top-most samples in the chart are the samples 

closest to the camera. Hence, it can be seen from the shifting chart which samples are occluded in the synthesized view. 

 

 

Figure 35: Example for the dependencies between input, intermediate and output signals of the rendering or error 

calculation step. 

 

While a conventional view synthesis approach would carry out the single steps depicted from bottom to top for all 

samples in the intervals (a) to (g), the method supports an interval-wise processing. Hence, all steps are first conducted 

for interval (a) before continuing with interval (b). Re-rendering and error calculation are carried out by iterating only 

once over the input depth samples. If only the view synthesis distortion is calculated there is no need to store 

intermediate results in the state of the renderer model.  

The boundaries of an interval in the output view are defined by the warped positions     and    of two neighboring input 

view samples at positions   and   . For warping, disparities are computed from the depth map as described in the 

beginning of sec. 2. Subsequently to the calculation of the interval boundaries, processing continues with interpolation, 

disocclusion handling, or occlusion handling: 

 Interpolation is carried out in non-occluded ranges that are not disoccluded, as for example in the intervals (a, 

c, d, g, h). The accuracy of the warping is higher than the accuracy given by the sampling rate of synthesized 

view; hence an interpolation at the full sample position     located between the interval boundaries    and    is 

carried out. For this, samples from an up-sampled version of the input texture       are mapped to the 

interpolation positions     in the synthesized view      . The position   in the up-sampled view is derived from 

the distance of the interpolation position to the interval boundaries: 

 
      

   
     

 

  
    

 
     (2) 
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The up-sampled view      is created in the initialization step by interpolating the input texture with quarter-

sample accuracy using the FIR-filters specified for motion-compensated interpolation in HEVC. 

 Disocclusions: If the width of the warped interval    –     is greater than two times the width of the sampling 

distance, as for example for interval (b), a disocclusion is assumed in the synthesized view. Instead of 

interpolation, hole filling is carried. For this purpose, the samples in the interval are set equal to the value of the 

sample belonging to the right interval boundary          (which belongs to the background). If the leftmost full 

sample position within the interval is close to the left interval border, it is assumed that it belongs to the 

foreground and it is set equal to the value of the left interval boundary         . Note, that the positions of 

disoccluded and filled samples are stored as additional information in the a filling map      . 

 Occlusions: Whether an interval is entirely occluded in the synthesized view, as for example interval (f), is 

determined by detecting if the interval boundaries are reversed (        ), hence no complex z-buffering is 

required. To derive whether other samples left to interval (f) are occluded, the rendering process stores the 

position of the foreground edge. This stored position is then be utilized when processing the next intervals, for 

example interval (e), to determine which parts of theses intervals are occluded. If re-rendering does not start at 

the right image border, the position of the last foreground edge is recovered by carrying out a search to the right 

of the changed depth samples. 

Sample values derived from interpolation or hole filling     
 , are instantly combined with the texture sample values from 

a second view     
  synthesized the same way and stored as intermediate variable in the renderer model. The result is the 

sample value that is used in the final synthesized view   
 . 

The rendering model supports two different configurations. In the first configuration, a rendering process is considered 

that renders intermediate views using both surrounding actually coded views. The second configuration considers 

rendering processes by which an intermediate view is rendered mainly from one coded view; the other coded view is 

only used for rendering areas that are not present in the preferred coded view. 

In the first configuration of the renderer model, the blending process is similar to that implemented in the VSRS 

software. Note that, although not depicted in Figure 35, a depth map     
  is rendered from     , when rendering     

 , using 

full sample accuracy. This depth map is used in the blending step. The decision how blending is carried out depends on 

the filling of     
 or     

  and the rendered depth maps     
 and     

 . While     
 and     

 have been obtained in the rendering 

process carried out before,     
  and     

  are stored as intermediate variables in the renderer model. The rules for 

determining the blended sample value          from     
       and     

       are specified in the following: 

 If the position (     is disoccluded (as indicated by the filling map) in only one view, the sample value from the 

other view is used. 

 Otherwise, if the position (     is disoccluded in both views, the backmost sample value is used. 

 Otherwise, if the depth difference retrieved from     
       and     

       is greater than a threshold, the front 

sample is used. 

 Otherwise, a weighted average of     
       and     

      , with a higher weight for the view that is closer to the 

virtual view position, is used. 

For the second configuration of the renderer model, the intermediate view is mainly rendered from one view and only 

holes are filled from the other view. If assuming that    
  is the main view ,the rules to determine the sample value 

         from     
       and     

       are specified in the following: 

 If     
      indicates that there is no disocclusion at     

      , the sample value    
       is used. 

 Otherwise, if     
       indicates that there is a disocclusion at     

      , the sample value     
       is used. 

 Otherwise, the average of     
      and     

       is used. 

If only partial re-rendering is carried out, the result   
  and all intermediate results are stored after the combination step 

and the processing of the interval is stopped. Otherwise, if the SVDC is determined, the distortion of the calculated value 

  
  is computed by comparing it to the reference      

  in the next step.  

To obtain the synthesized view distortion change the single intervals are rendered from right to left and the related 

distortions are summed up continuously. Moreover, and that is actually not depicted in Figure 35, the old per sample 

distortions of samples in the changed intervals are subtracted.  

The renderer model only re-renders those parts of the synthesized view that are affected by the considered depth change. 

It has to be considered that in some cases not only the intervals related to the changed depth values must be re-rendered, 

but also some neighbouring intervals. A reason is that neighbouring intervals that are occluded before a depth change can 

become visible after the depth change. The algorithm detects such cases and continues rendering, until all change 
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samples in the synthesized view are updated. The detection is carried out while warping by also considering the old 

shifted sample positions as they had been prior to the depth change and storing the left-most old position. 

Chroma channels of the synthesized view are rendered together with the luma channel and are stored in the same 

resolution as luma. For this, up sampled versions of the chroma channels are created in the initialization step, which are 

later used for interpolation as described above. The sampling rate is increased by a factor of eight in horizontal direction 

and a factor of two in vertical direction using the interpolation FIR-filters that are specified for motion-compensated 

prediction in HEVC. However, the total distortion is obtained by a weighted sum of luma SVDC and chroma SVDC with 

a weight of 1 for luma and a weight of ¼ for each of the two chroma channels. 

Early skip of SVDC computation  

To increase the processing speed of the VSO algorithm the SVDC calculations is skipped for lines of a block for that the 

distortion of the disparity vector is zero. This means that if distorted depth and original depth are mapped to the same 

disparity vector for all pixels in a line of the depth block the SVDC calculation is not carried out and the distortion is 

assumed to be zero. . 

2.4.1.2 Model based synthesized view distortion estimation without rendering  

The distortion of depth maps does not linearly affect the synthesis distortion, and the impact of depth map distortions 

varies according to the corresponding texture information. For example, the same depth distortions on textured and 

textureless regions lead to different synthesis distortions.  

In a conventional video coding system, one commonly used distortion function is the sum of squared differences (SSD), 

which is defined between original and encoded depth block as  

 
                          

 

       

 (3) 

where         and          indicate the original and reconstructed depth map, respectively, and       means the pixel 

position in a (macro-) block B. However, the conventional     metric is not an good estimate of the synthesized view 

distortion. Instead, the following view synthesis distortion (   ) metric provides an better estimate by that weighting the 

depth distortion        with the sum of absolute horizontal texture gradients: 

 
      

 

 
                                                                     

       

 (4) 

    indicates the reconstructed texture, and   is proportional coefficient determined by  

 
  

   

   
  

 

     
 

 

    
  (5) 

with   denoting the focal length,   denoting the baseline between the current and the rendered view,       and      

representing the values of the nearest and farthest depth of the scene, respectively.  

2.4.1.3 Depth fidelity term  

When encoding using the synthesized view distortion change or estimate only, the depth fidelity is strongly distorted. In 

order to preserve the depth fidelity the distortion measure used in RDO is computed by an weighted average of the 

synthesized view distortion or the estimated synthesized view distortion and the depth distortion. The distortion   used 

in RDO for depth maps is given by 

                              (6) 

with        denoting the synthesized view distortion change or estimate,        denoting the distortion of the depth map 

itself (i.e. SAD or SSD), and        and        denoting the weights for the two distortion terms.  

2.4.1.4 Integration of distortion metrics in the Encoder Control 

To enable rate-distortion optimization using the SVDC, the described renderer model is integrated in the encoding 

process for depth data. For this, the conventional distortion computation is replaced with computation of the weighted 

average of depth distortion and SVDC in distortion computation steps related to the mode decision, coding unit (CU) 

partitioning, motion parameter inheritance and merging. Note that for updating the renderer model used for the SVDC 

calculation re-rendering is carried out when a final decision on the coding mode is taken by the encoder control.  

In order to reduce the computational complexity the weighted average of SVDC and depth distortion in not used for all 

encoding decisions. A weighted average of VSD and depth distortion is used for intra-mode pre-selection and residual 
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quadtree partitioning. For motion estimation and rate-distortion optimized quantization the conventional SSD of depth 

data is used.  

2.4.1.5 Adaptation of the Lagrange Multiplier 

The usage of the synthesized view distortion in the rate-distortion decisions requires the adaptation of the Lagrange 

multiplier  to obtain optimized coding results. This adaptation is carried out by adjusting the Lagrange multiplier using 

an additional scaling factor    depending on the QP of the coded video. The factor enables an adjustment of video/depth 

rate allocation. As alternative a constant factor can be used.  

The computation of rate-distortion cost  has been modified to 
 

                   (7) 

with   denoting the weighted average of depth and synthesized view distortion,   denoting a scaling factor, and   

denoting the rate for the current coding mode. 

2.4.2 Zero residual coding for depth intra CUs   

In the rate distortion optimized coding of inter blocks a decision between coding with and without residual is carried out. 

For depth coding this principle is extended to intra coded blocks that are not part of slices using intra prediction only. 

Therefore, the residual is set to zero by the encoder. No additional signalling is used.  

2.4.3 Optional Encoder Control using a depth quadtree limitation  

In the encoding process a given CTB is split into smaller CUs, based on RD optimized decisions. A corresponding 

quadtree (QT) is obtained for the texture, and another one for the depth. This tool prevents the encoder from making full 

investigation of every possible QT configuration for the depth. 

The tool forces the encoder to limit the partitioning of the depth at the same level as the partitioning of the texture. For a 

given CTU, the quadtree of the depth is linked to the collocated CTB quadtree in the texture, so that a given CU of the 

depth cannot be split more than its collocated CU in the texture. 

This encoder restriction results in encoder runtime saving for the depth. 

               

Figure 36: Example of a CTB QT partitioning for the texture (left), allowed collocated depth CTB QT 

partitioning (centre), and disallowed collocated depth CTB QT partitioning (right). 

Figure 36 illustrates this principle. On the left a CTB QT partitioning for the texture is represented. In the centre, the 

collocated CTB in the depth is represented. This QT partitioning is allowed because it is, CB by CB, coarser than the 

corresponding texture CB. On the right, another example of possible collocated CTB in the depth is represented. This QT 

partitioning is disallowed because one CB is more partitioned than the texture (red lines). 

2.4.4 Optional Encoder Control for Renderable Regions in Dependent Views [Not in CTC] 

As an optional encoding technique, a mechanism is integrated by which regions in dependent views that can be rendered 

based on the transmitted independent view and the associated depth maps are identified. These regions are encoded by 

employing a modified cost measure, which mainly considers the required bit rates. After decoding, the renderable 

regions can be identified in the same way as in the encoder and replaced by rendered versions. 
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Figure 37: Rendering from a left camera position to a right camera position using depth maps. 

 

The encoder identifies regions in the current frame that can be rendered from frames of the same time instance in a 

reference view based on the reconstructed depth maps of the reference view (see Figure 37). During the encoding 

process, the encoder checks for every CU, if all samples within that CU can be rendered. If all samples can be rendered, 

no residual is transmitted for this CU. In our HEVC-based codec, this means that for inter prediction the 

no_residual_data_flag for the CU is set equal to 1 or for intra-prediction the coded block flag of the TUs within the CU 

is set equal to 0. It should be noted that no syntax change is applied; only the encoder decision is modified. 

Due to the quadtree structure in HEVC, the rate-distortion (RD-)costs are compared between different granularities of 

possible block subdivisions for the R-D optimization. Rendering artefacts have a different impact on the subjective 

image/video quality perception than coding artefacts and cannot be compared using conventional measurements, such as 

MSE or PSNR. Samples in renderable regions are not taken into account for calculating the distortion term in the R-D 

optimized encoder decisions. In Figure 38, the right image shows a block subdivision that is one level deeper than the 

ones in the left image. The grey area labels the samples that can be rendered and that are therefore not considered in the 

calculation of the distortion. Thus, for example, the upper left block in the right image is not considered at all. Hence, the 

costs being compared are       (left block subdivision) against                               (right 

block subdivision), where the distortions are only calculated based on the white shaded samples. E.g., the distortion of 

block   is     . By this modification, blocks for which a subblock can be rendered are not automatically split, but 

also the entire block may be coded using a conventional coding mode if this improves the overall coding efficiency. 

 

 

Figure 38: Distortion calculation on different tree depths. Renderable samples (gray shaded) are not taken into 

account. 

 

For renderable blocks, the Lagrange multiplier   is scaled by a factor    and the calculation of the R-D costs is 

changed from        to        . 
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2.4.5 Depth edge-based r-d optimization tuning [Not in SW] 

As alternative or in addition to the r-d optimization for depth maps as described in sec. 2.4.1, the following r-d 

optimization for depth coding is included. The purpose of this additional rd-opt is to reduce edge ringing artefacts in 

depth maps. 

Normally cost is calculated as SAD between original and distorted (reconstructed) samples: 

                              

         

   

 

 

              

   

            
 

   

 

Where      is distortion,  is original distortion cost,       is modified distortion cost for depth, and     is a horizontal 

filter {1,-1} that detects vertical edges. 

3. View Synthesis Algorithms 

In the following, two view synthesis algorithms are described. Sec. 3.1 describes the fast 1-dimensional view synthesis 

algorithm that is part of the HEVC-based 3DV software. It is also referred to as "VSRS 1D fast mode". In sec. 3.2, an 

alternative view synthesis algorithm is described. This algorithm is also referred to as "VSRS" and was developed during 

the 3DV exploration experiments. 

3.1 Fast 1-D View Synthesis (VSRS 1D Fast Mode) 

An overview of the view synthesis method is depicted in Figure 39. The method supports the interpolation of a 

synthesized view form a left      and right      texture with corresponding depth maps      and     . For this, two texture 

    
  and     

  are extrapolated from the left and the right view at the position of the virtual view. Subsequently, the 

similarity of     
  and     

  is enhanced before combining them to synthesized output view   
 . The single processing steps 

are discussed in the following. Without the loss of generality steps carried out independently for both, the left and the 

right view, are discussed for the left view only. 
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Figure 39: Processing steps of the view synthesis approach. 

 

Similarly as the renderer model used in the encoder control (cp. sec. 2.4.1), the view synthesis algorithm supports two 

configurations. In the first configuration, which is referred to as interpolative rendering, an intermediate view is 

synthesized using both surrounding coded views. In the second configuration, which is referred to as non-interpolative 

rendering, an intermediate view is rendered mainly from one coded view; the other coded view is only used for rendering 

areas that are not present in the preferred coded view. 

3.1.1 Upsampling of input video pictures 

The luma channel of input texture      is upsampled by a factor of four in horizontal direction. Chroma channels are 

upsampled by a factor of eight in horizontal direction and two in vertical direction. For upsampling, the FIR filters 

specified in HEVC for the purpose of motion-compensated interpolation are used. The resulting upsampled texture is 

denoted as      .  

3.1.2 Warping, interpolation and hole filling 

Warping, interpolation and hole filling are carried out in a combined step. For warping disparities are computed as 

described in the beginning of sec. 2. Warping, interpolation and hole filling is carried out line wise and within a line 

interval wise. Processing direction is from left to right. An interval in the output view is defined by the warped positions 

    and    of two neighboring input view samples at positions   and   . Subsequently to the calculation of the interval 

boundaries, processing continues depending on the width of the interval. 

 Interpolation is applied if the width of the warped interval    –      is less than or equal to two times the 

sampling distance. An interpolation at the full sample position     located between the interval boundaries 

   and    is carried out. For this, samples from the up-sampled version of the input texture       are mapped to 

the interpolation positions     in the synthesized view      . The position   in the up-sampled view is derived 

from the distance of the interpolation position to the interval boundaries: 

 
      

   
     

 

  
    

 
     (8) 

 Disocclusions: If the width of the warped interval    –     is greater than two times the width of the sampling 

distance a disocclusion is assumed in the synthesized view. Instead of interpolation hole filling is carried. For 

this purpose samples in the interval are set to the value of sample belonging to the right interval boundary 

         (which belongs to the background). If the leftmost full sample position within the interval is close to the 
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left interval border it is assumed that it belongs to the foreground and it is set to the value of the left interval 

boundary         . Disoccluded and filled sample position are stored in the filling map      .  

 Occlusions: If the boundaries of an interval are reversed (        ) the interval is occluded in the synthesized 

view. Rendering at a full sample position close to   
  might be carried out, if the next interval is not occluded 

and   
  belongs to a foreground object. Moreover, the algorithm uses the property that occluded background 

intervals are automatically overwritten by foreground objects in the synthesized view     , due to the processing 

direction from left to right.  

Chroma channels of the synthesized view are rendered together with luma channel and stored in the same resolution as 

luma. Moreover, if interpolative rendering is used, also a depth map     
  is extrapolated with full sample accuracy from 

the input depth map      within the steps described above. 

3.1.3 Reliability map creation 

In this step the filling map     
  is converted to the reliability map     

 . If interpolative rendering is used, positions marked 

as disocclusions in     
  are mapped to a reliability of 0. In areas located right to a disocclusion with a width of six 

samples the reliability is linearly increased from 0 to 255 from left to right in horizontal direction. All other samples are 

assigned with a reliability of 255. If non-interpolative rendering is used, positions marked as disocclusions in     
  are 

mapped to a reliability of 0. All other samples are assigned with a reliability of 255. 

3.1.4 Similarity enhancement 

In this step the histogram of       is adapted to the histogram of      . For this purpose a look up table (LUT) realizing a 

function   is created, that is subsequently applied to map the samples of       to adapt their values. 

The function   and the corresponding LUT are obtained by approximately solving  

 
        

           
   (9) 

where     denotes the histogram only regarding samples at positions      with reliabilities     
      and     

      of 

255. Chroma channels are treated in the same way. 

3.1.5 Combination 

     and      are combined to obtain the synthesized output view in this step.  

In the interpolative rendering mode is used, the decision how blending is carried out depends on the reliability maps 

    
 or     

  and the rendered depth maps     
 and     

 . The rules for determining the blended sample value          from 

    
       and     

       are given in the following: 

 If position (     is disoccluded (reliability of 0) in only one view, the sample value from the other view is used. 

 Otherwise, if position (     is disoccluded in both views, the backmost sample value is used. 

 Otherwise, if the depth difference retrieved form     
       and     

       is above a threshold, the front sample 

is used. 

 Otherwise, if one sample is not reliable with a value of 255, a weighted average with the given reliabilities as 

weights is used. 

 Otherwise, a weighted average of     
       and     

      with a higher weight for the view that is closer to the 

virtual view position is used. 

If the non-interpolative rendering mode is used, the intermediate view is mainly rendered from one view are utilized and 

only holes are filled from the other view. Assuming     
  is the main view,the rules for determining the sample value 

         from     
       and     

       are given in the following: 

 If     
      is equal to 255 or     

       is equal 0, the sample value    
       is used. 

 Otherwise, if     
       is equal to 0, the sample value     

       is used. 

 Otherwise, a weighted average with the given reliabilities as weights is used. 

3.1.6 Chroma decimation 

To convert the 4:4:4 YUV representation obtained by rendering to the required 4:2:0 output, chroma channels are 

decimated by a factor of two in horizontal and vertical direction using the FIR filter (1;2;1). 
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3.2 VSRS (alternative view synthesis algorithm) [Not in CTC] 

The VSRS algorithm was developed during the MPEG 3DV Exploration Experiments. VSRS takes two reference views 

and two depth maps as input to generate a synthesized virtual view. The intrinsic and extrinsic camera parameters are 

required and 1D parallel and non-parallel camera setups are supported.  

The software has two main modes referred to as “General mode” and “1D mode”. The reference views are reprojected to 

the target viewpoint using pixel-by-pixel mapping based on 3D warping in “General mode”, or horizontal pixel shifting 

in “1D mode”. 

3.2.1 General mode 

In the general mode, virtual views are generated by a technique referred to as “3D warping”. This process involves two 

steps. At first the original view (reference view) is projected into 3D world space using the corresponding reference 

depth map. Then the 3D space points are projected into the image plane of the “virtual” view. For this, the intrinsic 

camera parameters A, and extrinsic camera parameters E=[R|t] are required. The intrinsic matrix A, transforms the 3D 

camera coordinates to its 2D image coordinates. The extrinsic matrix E=[R|t] transforms the world coordinates to camera 

coordinates, which is composed of rotation matrix R and translation vector t. The two-step warping can be formulated in 

two equations as in eq. (10) and (12). First a pixel (ur, vr) in the reference view is warped to the world coordinates (Xw, 

Yw, Zw), using the depth of the reference view: 
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where subscript r indicates the reference view and zr is the depth value in the reference view at location (ur, vr) calculated 

from 
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where v is an 8-bit intensity of the depth map value. It is noted that the values z, Znear, and Zfar are assumed to be either 

all positive or all negative values. 

Then the 3D point is mapped to the virtual view: 
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where subscript v refers to the virtual view. 

The general mode is based on a "reverse warping" algorithm. Instead of forward warping the left and right reference 

views to the virtual location, the left and right depth maps are warped to the virtual view location. Then after filtering, 

these depth maps are used to warp the reference views to the virtual view. This results in a higher rendering quality of the 

final synthesized view. Figure 40 depicts the flow diagram of the general mode. 
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Figure 40: Flow diagram for VSRS general mode. 

 

The steps of VSRS general mode are briefly described below: 

 First, the two depth maps are mapped to the target viewpoint. E.g. the left reference depth is warped to the 

virtual view location using eq. (10) and (12). If multiple pixels warp to the same location in the virtual view, 

then the pixel closest to the camera wins, so foreground pixels will occlude background pixels. The right depth 

map is also warped in a similar way. We denote these warped depth maps as DL’ and DR’, respectively. 

 The mapped depth maps DL’ and DR’ may contain small holes. Small holes which are caused by rounding to 

integer coordinates are filled by a series of median filtering. Furthermore, binary masks for each side are 

maintained to indicate larger holes, for example caused by occlusions that remain after filtering. During the 

following steps, these binary masks are used and updated if necessary (for example during hole filling in 

step ). 

 Next, the left and right texture reference views are mapped to the target viewpoint using the filtered depth map 

DL’ and DR’. So two texture images at the target viewpoint are obtained, one generated from the left reference 

view and the other from the right reference view. We denote them here as VL’ and VR’, respectively. Note that 

DL’ is used to warp the left reference, and DR’ is used to warp the right reference. 

 Hole areas in the mapped texture images VL’ and VR’, which are caused by occlusion, are filled by pixels from 

the other mapped texture image. So holes in VL’ are filled from non-hole areas in VR’ and vice versa. 

 Next, these two virtual images are blended. The general mode has two modes of blending: Blending-on and 

Blending-off. The Blending-on mode is a weighted blending based on the baseline distance. So pixels from the 

reference camera which is closer to the virtual view are assigned a higher weight, based on the baseline ratio. In 

Blending-off mode, all pixels visible in the closer reference view are copied to the virtual view, and only hole 

areas are filled from the farther reference view. During this step, the binary masks are merged to form one mask 

indicating remaining holes which are inpainted in the next step. 

 Any remaining holes after blending are filled by an inpainting algorithm using the binary mask. Inpainting 

algorithms can be used to reconstruct damaged portions of images. Generally a mask is used to indicate which 

image regions need to be inpainted. Next, colour information is propagated inward from the region boundaries, 

i.e., the known image information is used to fill in the missing areas. An inpainting example is show in Figure 

41. 

Additionally, VSRS contains a Boundary Noise Removal algorithm. In this mode, the binary maps indicating holes 

caused by occlusion, are used to identify object boundaries. After identifying the background side of the holes based on 

the depth, the holes are expanded into the background. Then these areas in VL’ and VR’ are filled from the opposite 
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reference view. This reduces noise around object boundaries, where foreground pixels are falsely projected into 

background objects due to depth errors. 

 

 

Figure 41: Inpainting: “damaged” image, mask, and result after inpainting. 

 

3.2.2 1-d mode 

VSRS provides a second synthesis mode other than the general "3D warping" as described above: 1D mode. This mode 

is implemented with assumptions that the optical axes of camera are in parallel and the views are rectified such that no 

vertical disparities exist. Under the assumption of 1D mode, formulations can be simpler than in the general case:  

 The rotation matrix for every camera is identical to each other. 

 The translation vectors of all cameras share the same translation in Y and Z directions, that is, Ty and Tz are 

constant for every view. 

 As a consequence rv zz   

 Views are corrected (distortion and vertical disparity are null), so vertical position of intersection of optical axis 

in sensors is constant  

So the 33A matrix has the following form 
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among cameras). 

Then eq. (12) given for the general case can be simplified as, 
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The equation above is used to “warp” pixels from real views to the virtual one. 

 

Figure 42 depicts the flow diagram of the VSRS 1D-mode. 
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Figure 42: Flow diagram for VSRS 1D mode. 

The algorithm proceeds as follows: 

 In a preliminary phase,  

o The chroma components are upsampled to 4:4:4 format (for implementation simplicity). 

o For suppressing transient depth errors, the depth maps can be temporally filtered according to the 

variations of the colour information if the TemporalImprovementOption is chosen. 

o The colour video may be further upsampled, if sub-pixel precision is specified in the configuration file, 

for example, half-pixel or quarter-pixel. 

 During the warping process, the reference views and the depth maps are mapped to the target viewpoint using 

eq. (13), which is a 1D shifting on the samples. For each reference view, a binary mask is maintained indicating 

whether a pixel in the targeted map is filled or not (hole pixel). The warping procedure is also controlled by the 

splatting switch in configuration file. When splatting is selected, each pixel in the reference view may be 

mapped to two sample locations. Besides, two enhancement processing on warping (corresponding to 

CleanNoiseOption and WarpEnhancementOption) suppress some synthesis artefacts due to the texture-depth 

misalignment at object boundaries (which causes foreground pixels scattered to the background) and wrongly 

categorized holes in the foreground (which makes background pixels appear in the foreground). Warping of the 

unreliable pixels (which probably yield artefacts) is forbidden accordingly. 

 Two warped images from left and right reference views are obtained from last step, which are then merged to a 

single image. This operation is also applied on warped depth maps and filling masks. In case of conflicts (two 

pixels present for the same target position), the MergingOption specified by the user is applied in the following 

way. 

o Z-buffer only: Take the pixel closest to camera always. 

o Averaging only: Mix colours using weights in reverse proportional to the distance of the virtual camera 

from the left and right reference views 

o Adaptive merging: Use either the proximity criterion ( ) if depth level difference is greater than a 

threshold or, ( ) if depth levels are too similar, uses the weighting method. 
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 Hole areas in the warped images are filled by propagating the background pixels into the hole along the 

horizontal row. 

 Final view image is downsampled to original size if necessary and transformed to 4:2:0 format for output 

purposes. 

Additionally, VSRS 1D mode can use the boundary noise removal algorithm already described as final processing step in 

the section dedicated to the general mode. 

 



3D-HEVC 

  3D-HEVC  51 

4. Software 

4.1 Software repository 

The source code for the software will be available in the MPEG SVN repository. An initial version of the software is 

available in the following SVN repository. 

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/ 

For tool integration a branch for a company can be obtained by contacting: 

gerhard.tech@hhi.fraunhofer.de, 

kwegner@multimedia.edu.pl 

4.2 Build System 

The software can be built under linux using make. For Windows, solutions for different versions of Microsoft Visual 

Studio are provided. 

4.3 Software Structure 

The 3D-HEVC Test Model Software includes several applications and libraries for encoding, decoding and view 

synthesis:  

 Applications:  

o TAppEncoder, executable for bit stream generation 

o TAppDecoder, executable for reconstruction. 

o TAppRenderer, executable view synthesis 

o TAppExtractor, executable for bitstream extraction 

 Libraries:  

o TAppCommon, library for handling encoder, decoder and renderer options and camera parameters 

o TLibEncoder, encoding functionalities 

o TLibDecoder, decoding functionalities 

o TLibRenderer, renderer functionalities 

o TLibExtractor, bitstream extraction functionalities 

o TLibCommon, common functionalities 

o TLibVideoIO, video input/output functionalities 

 

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/
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