

Joint Collaborative Team on 3D Video Coding Extension Development

of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11
3rd Meeting: Geneva, CH , 17–23 Jan. 2013

Document: JCT3V-

C1005_d0

Title: 3D-HEVC Test Model 3

Status: Output Document of JCT-3V

Purpose: Draft of 3D-HEVC Test Model Description

Author(s) or

Contact(s):

Gerhard Tech

Fraunhofer HHI

Krzysztof Wegner

Poznan University of Technology

Ying Chen

Qualcomm Incorporated

Sehoon Yea

LG Electronics

Email:

Email:

Email:

Email:

gerhard.tech@hhi.fraunhofer.de

kwegner@multimedia.edu.pl

cheny@qti.qualcomm.com

sehoon.yea@lge.com

Source: Editor

ABSTRACT

Draft 3 of 3D-HEVC Test Model Description

Ed. Notes (WD3) (changes compare to JCT3V-B1005):

 ----------- Release d1 -----------

 (3DC-GT2) Editorial improvements, small corrections.

 ----------- Release d0 -----------

 Split of Test Model text and specification text

 (3DE-05) Alignment with MV-HEVC draft 3.

 (3DE-01) Reordered sub-clauses related to disparity estimation and additional motion candidates.

 (3DN-20) Alignment of JCT3V-C0152 + JCT3V-C0137.

 (3DN-07/JCT3V-C0137) Texture motion vector candidate for depth.

 (3DN-07/JCT3V-C0137) Removal of MPI.

 (3DN-19) Camera parameters

 (3Dn−03) Wedgelet pattern generation process.

 (3Dn-01) Incorporated missing intra-predicted wedgelet partition mode

 (3DN-08/JCT3V-C0138) Removal of parsing dependency for inter-view residual prediction.

 (3DN-18/JCT3V-C0160) QTL disabled for RAP.

 (3DN-17/JCT3V-C0154) Reference sub-sampling for SDC and DMM.

 (3Dc-03) Fix SDC

 (3DN-16/JCT3V-C0096) Removal of DMM 2 from SDC.

 (3DN-15/JCT3V-C0034) Delta DC processing for DMMs.

 (3DN-14/JCT3V-C0044) Signalling of wedgeIdx for DMM3.

 (3DN-02/JCT3V-C0152) View synthesis prediction (without disparity derivation part).

 (3DN-03/JCT3V-C0112) Restricted search of max disparity.

 (3DN-01,02/JCT3V-C0131,JCT3V-C0152) Disparity derivation from depth maps.

 (3Dc-02) Incorporated missing conditions of long/short-term pictures in AMVP (related to JCT3V-B0046).

 (3DN-13/JCT3V-C0116) Inter-view vector scaling for AMVP.

 (3DE-03) Incorporated derivation process for AMVP from base spec.

 (3DN-12/JCT3V-C0115) Signalling of inter-view motion vector scaling.

 (3DE-02) Incorporated TMVP text from base spec.

 (3DN-09/JCT3V-C0047) Alternative reference index for TMVP.

 (3DN-10/JCT3V-C0051) Unification of inter-view candidate derivation.

 (3DE-01) Revised text related to residual prediction.

 (3DN-06/JCT3V-C0129) Vertical component in residual prediction.

 (3DN-05/JCT3V-C0097/JCT3V-C0141) Temporal blocks first in DV derivation.

http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=594
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=578
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=578
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=578
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=579
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=604
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=596
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=535
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=467
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=481
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=594
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=551
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=572
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=594
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=235
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=555
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=554
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=485
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=489
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=570
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=536
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=582

 3D-HEVC

2 3D-HEVC

 (3DC-GT1) Editorial improvements, small corrections.

 (3DN-04/JCT3V-C0135) Restriction on the temporal blocks for memory bandwidth reduction in DV derivation.

 (3Dn-02) Full sample MV accuracy for depth.

 (3DN-11/JCT3V-C0046) Extension of illumination compensation to depth.

 (3Dc-01) Fix Illumination compensation (including ic_flag for skip).

Ed. Notes (WD2) (changes compared to JCT3V-A1005)

 Accepted changes and marked delta to base spec

 (3DC-GT2) Editorial improvements, small corrections

 (3DC-CY) Editorial improvements, small corrections

 (MVS-02/JCT3V-B0046) Treatment of inter-view pictures as long term- reference pictures

 (3DE-11) Revised text related to 3Dn-01

 (3Dn-01/m23639) Results on motion parameter prediction

 (3DE-12) Revised text related residual prediction

 (3DE-10) Revised text Related to Illumination compensation.

 (3DN-01/JCT3V-B0045) Illumination compensation for inter-view prediction.

 (3Dn-02/m24766) Restricted Inter-View Residual Prediction

 (3DE-09) Revised text related to depth intra: Edge Intra

 (3DE-09) Revised text related to depth intra: SDC

 (3DE-09) Revised text related to depth intra: DMMs

 (3DO-01/JCT3V-B0131) Depth distortion metric with a weighted depth fidelity term

 (3DN-12/JCT3V-B0036) Simplified Depth Coding with an optional Depth LUT

 (3DN-13/JCT3V-B0039) Simplified Wedgelet search for DMM modes 1 and 3

 (3DN-03/JCT3V-B0083) Unconstrained motion parameter inheritance

 (3DE-08) Incorporated context tables for SDC

 (3DE-07) Improved MPI text.

 (3DN-02/JCT3V-B0068) Incorporated Depth Quadtree Prediction.

 (3DE-06) Incorporated parsing process, including tables for DMMs.

 (3DE-05) Added missing initialization of invalid motion/disparity parameters

 (3DC-03) Added missing pruning of collocated merge candidate due to number of total candidates.

 (3DE-04) Moved pruning of spatial merge candidate B2 due to number of total candidates.

 (3DE-03) Moved derivation of disparity one level higher in process hierarchy.

 (3DE-02) Inserted "Derivation process for motion vector components and reference indices" from base spec

 (3DC-02) Fixed storage of IvpMvFlagLX and IvpMvDisp.

 (3DN-09-10-11/JCT3V-B0048,B0069,B0086) Modification inter-view merge candidates

 (3DC-01) Fixed derivation of inter-view merge candidates.

 (3DE-01) Revised derivation of disparity from temporal candidates

 (3DN-04/JCT3V-B0047) Improvements for disparity vector derivation)

 (3DN-08/JCT3V-B0136) Support of parallel merge in disparity vector derivation

 (3DN-05/JCT3V-B0135) Modified disparity vector derivation process for memory reduction

 (3DN-04/JCT3V-B0111) Decoupling inter-view candidate for AMVP

 (3DN-07/JCT3V-B0096) Removal of dependency between multiple PUs in a CU for DV-derivation

 (3DC-GT) Small corrections, editorial improvements

Ed. Notes (WD1) (changes compare to N12744)

 (3D08/JCT3V-A0126) (T,N) Simplified disparity derivation

 (3D16) Moved 3D-tool related flags from SPS to VPS, removal camera parameters

 (3D09/JCT3V-A0049) (N) Inter-view motion prediction modification

 (3D13/JCT3V-A0119) (T) VSO depth fidelity

 (3D07/JCT3V-A0070) (T,N) Region boundary chain coding for depth maps

 (3D06/JCT3V-A0087) (T) RDO selection between Non-Zero Residual and All-Zero Residual Intra

 (3D12) (T) Depth Quadtree Prediction

 (3D15) (N) Fix references

 (3D11) (T,N) Improvement of text of already adopted tools

 (3D10/JCT3V-A0097) (T;N) Disparity vector generation

 (3D02) (N) Removed MV-Part and update to Annex F

 (3D03) (T) Labelling of tools not in CTC/Software. Removal?

http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=576
http://phenix.int-evry.fr/jct2/doc_end_user/current_document.php?id=484
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=235
http://phenix.int-evry.fr/mpeg/doc_end_user/current_document.php?id=36409&id_meeting=151
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=234
http://phenix.int-evry.fr/mpeg/doc_end_user/current_document.php?id=37712&id_meeting=152
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=340
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=224
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=228
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=288
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=271
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=237
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=272
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=291
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=236
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=345
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=344
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=320
http://phenix.it-sudparis.eu/jct3v/doc_end_user/current_document.php?id=301

3D-HEVC

 3D-HEVC 3

 (3D05/JCT3V-A0093) (T) VSO early skip

 (3D04/JCT3V-A0033) (T) VSO model based estimation

 (3D14) (N) Update of low level specification to match HEVC text specification 8(d7)

 (3D01) (N): Removed HEVC text specification

 3D-HEVC

4 3D-HEVC

CONTENTS

Abstract .. 1

Contents .. 4

List of Figures... 5

List of Tables .. 6

1. Data Format and System Description ... 8

2. Coding Algorithm ... 9
2.1 Coding of the Independent View .. 11
2.2 Coding of Dependent Views ... 11

2.2.1 Disparity-compensated prediction .. 11
2.2.1.1 Reference list construction and modification .. 12

2.2.2 View synthesis based inter-view prediction [Not in SW] ... 13
2.2.2.1 Post processing in-loop filtering [Not in SW] .. 13

2.2.3 Inter-view motion prediction .. 14
2.2.3.1 Derivation of Disparity Vectors .. 14
2.2.3.2 Usage of Inter-View Motion Parameter Prediction .. 21
2.2.3.3 Derivation of co-located motion vector candidate .. 22

2.2.4 Depth-based motion parameter prediction [Not in SW] ... 23
2.2.5 Inter-view residual prediction ... 24
2.2.6 Illumination compensation (IC) .. 24
2.2.7 Adjustment of QP of texture based on depth data [Not in SW] .. 24

2.3 Coding of Depth Maps .. 25
2.3.1 Disabled chrominance coding [Not in SW] .. 25
2.3.2 Non-linear depth representation [Not in SW] ... 25
2.3.3 Z-near z-far compensated weighted prediction [Not in SW] ... 25
2.3.4 Modified motion compensation and motion vector coding ... 25
2.3.5 Disabling of in-loop filtering .. 26
2.3.6 Depth modelling modes .. 26

2.3.6.1 Mode 1: Explicit Wedgelet Signalization ... 27
2.3.6.2 Mode 2: Intra-predicted Wedgelet Partitions .. 27
2.3.6.3 Mode 3: Restricted signalling and inter-component prediction of Wedgelet partitions...................... 28
2.3.6.4 Mode 4: Inter-component prediction of Contour partitions .. 29
2.3.6.5 Constant partition value coding .. 29
2.3.6.6 Co-located Texture Luma Block intra direction constraint ... 31
2.3.6.7 Coarse wedgelet search with refinement step ... 31
2.3.6.8 Mode selection .. 32
2.3.6.9 Signalling in the bitstream .. 32

2.3.7 Region boundary chain coding ... 32
2.3.7.1 Signalling in the bitstream .. 33

2.3.8 Simplified depth coding .. 34
2.3.8.1 Depth Lookup Table ... 34

2.3.9 Motion parameter inheritance ... 35
2.3.10 Depth Quadtree Prediction .. 36

2.4 Encoder Control .. 36
2.4.1 View Synthesis Optimization .. 37

2.4.1.1 Synthesized View Distortion Change (SVDC) ... 37
2.4.1.2 Model based synthesized view distortion estimation without rendering .. 41
2.4.1.3 Depth fidelity term .. 41
2.4.1.4 Integration of distortion metrics in the Encoder Control .. 41
2.4.1.5 Adaptation of the Lagrange Multiplier ... 42

2.4.2 Zero residual coding for depth intra CUs .. 42
2.4.3 Optional Encoder Control using a depth quadtree limitation .. 42
2.4.4 Optional Encoder Control for Renderable Regions in Dependent Views [Not in CTC] 42
2.4.5 Depth edge-based r-d optimization tuning [Not in SW] ... 44

3. View Synthesis Algorithms .. 44
3.1 Fast 1-D View Synthesis (VSRS 1D Fast Mode) ... 44

3.1.1 Upsampling of input video pictures .. 45
3.1.2 Warping, interpolation and hole filling ... 45
3.1.3 Reliability map creation .. 46

3D-HEVC

 3D-HEVC 5

3.1.4 Similarity enhancement .. 46
3.1.5 Combination .. 46
3.1.6 Chroma decimation ... 46

3.2 VSRS (alternative view synthesis algorithm) [Not in CTC] ... 47
3.2.1 General mode .. 47
3.2.2 1-d mode ... 49

4. Software .. 52
4.1 Software repository ... 52
4.2 Build System ... 52
4.3 Software Structure .. 52

LIST OF FIGURES

Figure 1: Overview of the system structure and the data format for the transmission of 3D video. 8

Figure 2: Access unit structure and coding order of view components. ... 9

Figure 3: Basic codec structure with inter-component prediction (red arrows). ... 11

Figure 4: Disparity-compensated prediction as an alternative to motion-compensated prediction. 12

Figure 5: Update of decoded picture buffer. ... 12

Figure 6: Construction of reference lists (L0, L1). ... 13

Figure 7: Modification of reference lists (L0, L1). ... 13

Figure 8: a) The original side view, b) Disocclusion in the side view, and c) CUs selected by the rd-opt for coding in the

side view. .. 13

Figure 9: Basic principle of deriving motion parameters for a block in a current picture based on motion parameters in an

already coded reference view and an estimate of the depth map for the current picture. ... 14

Figure 10: Mapping of a depth map into another view: (left) original depth map; (middle) converted depth map after

displacing the original samples; (right) final converted depth map after filling of holes. .. 15

Figure 11: Generation of an initial depth map estimate after coding the first dependent view of a random access unit. ... 16

Figure 12: Derivation of a depth map estimate for the current picture using motion parameters of an already coded view

of the same access unit. .. 16

Figure 13: Update of depth map estimate for a dependent view based on coded motion and disparity vectors. 17

Figure 14: Location of spatial neighbour blocks .. 18

Figure 15: Location of temporal neighbour blocks in temporal candidate pictures .. 18

Figure 16: Example: DV derivation for the second PU, block A1 is omitted to enable parallel processing 18

Figure 17: The BR temporal block below the lower CTU row is not considered ... 19

Figure 19: Example: For the derivation of the disparity from DV-MCP neighbouring blocks of the current PU, above

block B2, B1 and B0 are not used, since they are not located within the current CTU. ... 20

Figure 20: Retrieval of the virtual depth block ... 21

Figure 21: Inter-view motion vector scaling in AMVP and TMVP ... 23

Figure 22: Independent derivation of motion information for each point of encoded CU from corresponding point in

reference view. ... 24

Figure 24: Contour partition of a block: continuous (left) and discrete signal space (middle) with corresponding partition

pattern (right). ... 27

Figure 25: Intra prediction of Wedgelet partition (blue) for the scenarios that the above reference block is either of type

Wedgelet partition (left)or regular intra direction(right). ... 28

Figure 26: Prediction of Wedgelet (blue) and Contour (green) partition information from texture luma reference........... 29

Figure 27: CPVs of block partitions: CPV prediction from adjacent samples of neighbouring blocks (left) and cross

section of block (right), showing relation between different CPV types. ... 29

 3D-HEVC

6 3D-HEVC

Figure 28: Optimized search strategy for non-quantized partition offset values. ... 31

Figure 29: Coarse subset of Wedgelet separation line start/end positions (left) and Wedgelet node with refinements

(right). ... 32

Figure 30: Reconstructed edge using the relationship between previous and current directions .. 33

Figure 31: Example of region boundary chain coding .. 34

Figure 32: The derivation of corresponding texture block ... 35

Figure 34: Definition of the SVDC related to the distorted depth data of the block depicted by the hatched area in the

bottom branch; VS denotes the view synthesis step and SSD stands for sum of squared differences. 38

Figure 35: Example for the dependencies between input, intermediate and output signals of the rendering or error

calculation step. .. 39

Figure 36: Example of a CTB QT partitioning for the texture (left), allowed collocated depth CTB QT partitioning

(centre), and disallowed collocated depth CTB QT partitioning (right). .. 42

Figure 37: Rendering from a left camera position to a right camera position using depth maps. 43

Figure 38: Distortion calculation on different tree depths. Renderable samples (gray shaded) are not taken into account.

 .. 43

Figure 39: Processing steps of the view synthesis approach. ... 45

Figure 40: Flow diagram for VSRS general mode. .. 48

Figure 41: Inpainting: “damaged” image, mask, and result after inpainting. ... 49

Figure 42: Flow diagram for VSRS 1D mode. ... 50

LIST OF TABLES

Table 1: The availability of the co-located motion vector 21

Table 2: Split flags and partition sizes of depth depending on split flags and partition sizes of texture 35

3D-HEVC

 3D-HEVC 7

1. Data Format and System Description

3D video is represented using the Multiview Video plus Depth (MVD) format, in which a small number of captured

views as well as associated depth maps are coded and the resulting bitstream packets are multiplexed into a 3D video

bitstream. After decoding the video and depth data, additional intermediate views suitable for displaying the 3D content

on an auto-stereoscopic display can be synthesized using depth-image-based rendering (DIBR) techniques. For the

purpose of view synthesis, camera parameters are additionally included in the bitstream. The bitstream packets include

header information, which signal, in connection with transmitted parameter sets, a view identifier and an indication

whether the packet contains video or depth data. Sub-bitstreams containing only some of the coded components can be

extracted by discarding bitstream packets that contain non-required data. One of the views, which is also referred to as

the base view or the independent view, is coded independently of the other views and the depth data using a conventional

HEVC video coder. The sub-bitstream containing the independent view can be decoded by an unmodified HEVC video

decoder and displayed on a conventional 2D display. Optionally, the encoder can be configured in a way that a sub-

bitstream representing two views without depth data can be extracted and independently decoded for displaying the 3D

video on a conventional stereo display. The codec can also be used for coding multiview video signals without depth

data. In that case alternative methods such as Image Domain Warping (IDW) may be used to generate a multiview

signal. And, when using depth data, it can be configured in a way that the video pictures can be decoded independently

of the depth data.

Figure 1: Overview of the system structure and the data format for the transmission of 3D video.

The basic concept of the system and data format is illustrated in Figure 1. In general the input signal for the encoder

consists of multiple views, associated depth maps, and corresponding camera parameters. However, as described above,

the codec can also be operated without depth data. The input component signals are coded using a 3D video encoder,

which represents an extension of HEVC. At this, the base view is coded using an unmodified HEVC encoder. The 3D

video encoder generates a bitstream, which represents the input videos and depth data in a coded format. If the bitstream

is decoded using a 3D video decoder, the input videos, the associated depth data, and camera parameters are

reconstructed with the given fidelity. For displaying the 3D video on an autostereoscopic display, additional intermediate

views are generated by a DIBR algorithm using the reconstructed views and depth data. If the 3D video decoder is

connected to a conventional stereo display instead of to an autostereoscopic display, the view synthesizer can also

generate a pair of stereo views, in case such a pair is not actually present in the bitstream. At this, it is possible to adjust

the rendered stereo views to the stereo geometry of the viewing conditions. One of the decoded views or an intermediate

view at an arbitrary virtual camera position can also be used for displaying a single view on a conventional 2D display.

The 3D video bitstream is constructed in a way that the sub-bitstream representing the coded representation of the base

view can be extracted by simple means. The bitstream packets representing the base view can be identified by inspecting

transmitted parameter sets and the packet headers. The sub-bitstream for the base view can be extracted by discarding all

 3D-HEVC

8 3D-HEVC

packets that contain depth data or data for the dependent views and, then, the extracted sub-bitstream can be directly

decoded with an unmodified HEVC decoder and displayed on a conventional 2D video display.

The encoder can also be configured in a way that the sub-bitstream containing only two stereo views can be extracted

and directly decoded using a stereo decoder. The encoder can also be configured in a way that the views can be generally

decoded independently of the depth data. It is also possible to synthesize intermediate view using only the stereo

sequences as input of the view synthesis.

A detailed description of the coding scheme is given in sec. 2. Depth-image-based rendering algorithms are described in

sec. 3.

2. Coding Algorithm

In the following, the coding algorithm based on the MVD format, in which each video picture is associated with a depth

map, is described. The coding algorithm can also be used for a multiview format without depth maps. The video pictures

and, when present, the depth maps are coded access unit by access unit, as it is illustrated in Figure 2. An access unit

includes all video pictures and depth maps that correspond to the same time instant. Non-VCL NAL units containing

camera parameters may be additionally associated with an access unit. It should be noted that the coding order of access

units doesn't need to be identical to the capture or display order. In general, the reconstructed data of already coded

access units can be used for an efficient coding of the current access unit. Random access is enabled by so-called random

access units or instantaneous decoding refresh (IDR) access units, in which the video pictures and depth maps are coded

without referring to previously coded access units. Furthermore, an access unit doesn't reference any access unit that

precedes the previous random access unit in coding order. If the picture of the base view in an access unit is an IDR

picture, the access unit is an IDR access unit. All pictures in an IDR access unit shall be IDR pictures. The IDR picture

type cannot be used in non-IDR access units. For random access, the IDR picture and the clean random access (CRA)

picture cannot be simultaneously present in an access unit.

Figure 2: Access unit structure and coding order of view components.

The video pictures and depth maps corresponding to a particular camera position are indicated by a view identifier

(viewId). All video pictures and depth maps that belong to the same camera position are associated with the same value

of viewId. The view identifiers are used for specifying the coding order inside the access units and detecting missing

views in error-prone environments. Inside an access unit, the video picture and, when present, the associated depth map

with viewId equal to 0 are coded first, followed by the video picture and depth map with viewId equal to 1, etc. A video

picture and depth map with a particular value of viewId are transmitted after all video pictures and depth maps with

smaller values of viewId. For the independent view, the video picture is always coded before the associated depth map.

For dependent views, the video picture maybe coded before or after the associated depth map (i.e., the depth map with

the same value of viewId). It should be noted that the value of viewId doesn't necessarily represent the arrangement of

3D-HEVC

 3D-HEVC 9

the cameras in the camera array. For ordering the reconstructed video pictures and depth map after decoding, each value

of viewId is associated with another identifier called view order index (VOI). The view order index is a signed integer

values, which specifies the ordering of the coded views from left to right. If a view A has a smaller value of VOI than a

view B, the camera for view A is located left to the camera of view B. In addition, camera parameters required for

converting depth values into disparity vectors are included in the bitstream. For the considered linear setup, the

corresponding conversion parameters consist of a scale factor and an offset. The vertical component of a disparity vector

is always equal to 0. The horizontal component is derived according to

dv = (s * v + o) >> n,

where v is the depth sample value, s is the transmitted scale factor, o is the transmitted offset, and n is a shift parameter

that depends on the required accuracy of the disparity vectors.

All of the video and depth sequences are associated with a video parameter set. Each video sequence and depth sequence

is associated with a separate sequence parameter set and a separate picture parameter set. The picture parameter set

syntax, the NAL unit header syntax, and the slice header syntax for the coded slices haven't been modified for including

a mechanism by which the content of a coded slice NAL units can be associated with a component signal.

The video parameter set provides the following information about all component sequences:

 the view identifier (indicates the coding order of a view);

 the depth flag (indicates whether video data or depth data are present);

 the view order index (indicates the location of the view relative to other coded views);

For the base view, view identifier and depth flag are not present and inferred to be equal to 0.

The sequence parameter set for all component sequences except the base view has been extended. These sequence

parameter sets contain the following additional parameters:

 an indicator specifying whether camera parameters are present in the sequence parameter set or in the slice

headers;

 when camera parameters are present in an sequence parameter set, for each viewId value smaller than the

current view identifier, a scale and an offset specifying the conversion of a depth sample of the current view to a

horizontal disparity between the current view and the view with viewId;

 when camera parameters are present in an sequence parameter set, for each viewId value smaller than the

current view identifier, a scale and an offset specifying the conversion of a depth sample of the view with

viewId to a horizontal disparity between the current view and the view with viewId;

The sequence parameter set for the base view doesn't contain the additional parameters. The sequence parameter sets for

dependent views include a flag, which specifies whether the camera parameters are constant for a coded video sequence

or whether they can change on a picture by picture basis. If this flag indicates that the camera parameters are constant for

a coded video sequence, the camera parameters (i.e., the scale and offset values described above) are present in the

sequence parameter set. Otherwise, the camera parameters are not present in the sequence parameter set, but instead the

camera parameters are coded in the slice headers that reference the corresponding sequence parameter set.

[Ed. (GT): In the current software version view identifier and view order index are used as described above. However, in

the normative annex the meaning of view identifier and view order index has been swapped.]

 3D-HEVC

10 3D-HEVC

Figure 3: Basic codec structure with inter-component prediction (red arrows).

The basic structure of the 3D video codec is shown in the block diagram of Figure 3. In principle, each component signal

is coded using an HEVC-based codec. The resulting bitstream packets, or more accurately, the resulting Network

Abstraction Layer (NAL) units, are multiplexed to form the 3D video bitstream. The base or independent view is coded

using an unmodified HEVC codec. Given the 3D video bitstream, the NAL units containing data for the base layer can

be identified by parsing the parameter sets and NAL unit header of coded slice NAL units (up to the picture parameter

set identifier). Based on these data, the sub-bitstream for the base view can be extracted and directly coded using a

conventional HEVC decoder.

For coding the dependent views and the depth data, modified HEVC codecs are used, which are extended by including

additional coding tools and inter-component prediction techniques that employ already coded data inside the same access

unit as indicated by the red arrows in Figure 3. For enabling an optional discarding of depth data from the bitstream, e.g.,

for supporting the decoding of a stereo video suitable for conventional stereo displays, the inter-component prediction

can be configured in a way that video pictures can be decoded independently of the depth data. A detailed description of

the added coding tools is given in the following subsections.

2.1 Coding of the Independent View

The independent view, which is also referred to as the base view, is coded using an unmodified HEVC codec.

2.2 Coding of Dependent Views

For the dependent views, the same concepts and coding tools are used as for the independent view. However, additional

tools have been integrated into the HEVC codec, which employ already coded data in other views for efficiently

representing a dependent view. The additionally integrated tools are described in the following.

2.2.1 Disparity-compensated prediction

As a first coding tool for the dependent views, the well-known concept of disparity-compensated prediction (DCP),

which is also used in MVC, has been added as an alternative to motion-compensated prediction (MCP). At this, MCP

refers to an inter-picture prediction that uses already coded pictures of the same view, while DCP refers to an

inter-picture prediction that uses already coded pictures of other views in the same access unit, as it is illustrated in

Figure 4.

3D-HEVC

 3D-HEVC 11

Figure 4: Disparity-compensated prediction as an alternative to motion-compensated prediction.

The macroblock syntax and decoding process haven't been changed for adding DCP, only the high-level syntax has been

modified so that already coded video pictures of the same access unit can be inserted into the reference pictures lists (as

described in 2.2.1.1). As illustrated in Figure 4, the transmitted reference picture index (R in the figure) signals whether

an inter-coded blocks is predicted by MCP or DCP. The motion vector prediction is modified in a way that the motion

vectors of motion-compensated blocks are predicted by only using the neighbouring blocks that also use temporal

reference pictures, while the disparity vectors of disparity-compensated blocks are predicted by only using the

neighbouring blocks that also use inter-view reference pictures.

2.2.1.1 Reference list construction and modification

For motion-/disparity-compensated prediction, the inter-view reference frames as well as the inter-frame reference

frames are included in the reference lists (L0, L1). The reference lists are constructed as specified in the following steps.

1. Update of decoded picture buffer (DPB)

- The inter-view reference frames, which are already coded frames in the same access unit, are added to the

current DPB. The status of the inter-view reference frames are signalled as view dependency in Video

Parameter Set (VPS)

- The status of view components present in DPB in a view is signalled by the Reference Picture Set (RPS).

Figure 5: Update of decoded picture buffer.

2. Construction of reference lists (L0, L1)

- The inter-frame references are firstly added into the reference lists (L0, L1) in the same manner as the reference

list construction in HEVC. After that, the inter-view references are added at the end of the inter-frame

references. The inter-view references can be included in L0, L1, or both.

 3D-HEVC

12 3D-HEVC

Figure 6: Construction of reference lists (L0, L1).

3. Modification of reference lists (L0, L1)

- The constructed reference lists can be modified based on reference picture list modification syntax table as

defined in HEVC.

- One example of the final reference picture lists 0 after modifying the default list is shown in Figure 7.

Figure 7: Modification of reference lists (L0, L1).

2.2.2 View synthesis based inter-view prediction [Not in SW]

The encoder and the decoder use the same inter-prediction view synthesis algorithm. Basing on all already coded views,

a new virtual view is synthesized in the position of the currently processed view. Some regions of newly synthesized

image are not available because they were occluded in previously coded views. Those disoccluded regions are identified

and marked on a binary map, named availability map, which controls coding and decoding process. Coder and decoder

simultaneously use this map to determine, whether given CU is coded or not. Because in a typical case most of the scene

is the same in all of views, only small parts are disoccluded in subsequently coded views, and thus only small amount of

CUs is coded.

a) b) c)

Figure 8: a) The original side view, b) Disocclusion in the side view, and c) CUs selected by the rd-opt for coding

in the side view.

2.2.2.1 Post processing in-loop filtering [Not in SW]

A final step of view-synthesis prediction is reduction of artefacts in synthesized view. This post-processing consists of

Depth-Gradient-based Loopback Filterer (DGLF) and Availability Deblocking Loopback Filter (ADLF).

The first one (DGLF), reduces texture artefacts introduced by DIBR technique in the areas

of a sudden depth changes. In order to cope that the synthesized image is adaptively filtered with respect to depth

gradient strengths. Large depth edges impose strong low-pass filtering of the synthesized texture, while flat depth regions

are not filtered at all.

3D-HEVC

 3D-HEVC 13

The latter (ADLF), reduces artefacts that are generated as a result of block CU-based coding. Shape of coded region not

necessarily matches shape of binary availability map. This discrepancy is a source of artificial edges between those

regions (Figure 8 b) and c)) . The ADLF provides smooth transition between coded and synthesized regions by

interpolating between them.

2.2.3 Inter-view motion prediction

The basic concept of the inter-view prediction of motion parameters is illustrated in Figure 9. For the following

overview, it is assumed that an estimate of a pixel-wise depth map for the current picture is given. Below, it is described

how such an estimate can be derived. For deriving candidate motion parameters for a current block in a dependent view,

the maximum depth value d within the associated depth block is converted to a disparity vector. By adding the disparity

vector to the sample location x, which is in the middle of the block, a reference sample location xR is obtained. The

prediction block in the already coded picture in the reference view that covers the sample location xR is used as the

reference block. If this reference block is coded using MCP, the associated motion parameters can be used as candidate

motion parameters for the current block in the current view. The derived disparity vector can also be directly used as a

candidate disparity vector for DCP.

Figure 9: Basic principle of deriving motion parameters for a block in a current picture based on motion

parameters in an already coded reference view and an estimate of the depth map for the current picture.

2.2.3.1 Derivation of Disparity Vectors

The concept of inter-view motion prediction requires a disparity vector to locate a corresponding block of the current

PU/CU in an already coded picture of the same time instance. Therefore the codec provides four possibilities to derive a

disparity vector.

In method 1 the disparity vector is derived from a depth map belonging to a view coded prior to the current view.

Therefore the complete depth map is warped to the current view. In method 2 a complete low resolution depth map is

estimated for the current picture without utilizing any coded depth maps. In method 3 coding of a depth map is not

required as well. However, in contrast to method 2 an estimation of a complete depth map is not performed. The

disparity is derived from spatial and temporal neighbouring blocks which are using inter-view prediction or from motion

vectors which are obtained by inter-view prediction. Method 4 combines methods 1 and 3. In contrast to method 1,

where forward warping is utilized, in method 4 a disparity vector is derived first as done in method 3. This disparity

vector is then utilized to identify a depth block in an already coded depth view to perform backward warping.

 3D-HEVC

14 3D-HEVC

Methods 1 and 4 require the transmission of depth data as part of the bitstream, and by using one of these methods a

decoder must decode the depth maps of previously coded views for decoding dependent views. Methods 2 and 3 are also

applicable if depth maps are not coded inside the bitstream, and when depth maps are coded, the decoding of the video

pictures is still independent of the depth maps.

In the following, all four methods by which a suitable disparity vector for the current block can be derived based on

already transmitted information are described. All methods have been integrated in the codec, and one of the methods

can be chosen by configuring the encoder (or by macro switches) accordingly.

2.2.3.1.1 Method 1: Disparity estimate based on already coded depth map [Not in CTC]

Since the depth map for a reference view is coded before the current picture, the reconstructed depth map is mapped into

the coordinate system of the current picture for obtaining a suitable depth map estimate for the current picture. In Figure

10, such a mapping is illustrated for a simple depth map, which consists of a square foreground object and background

with constant depth. For each sample of the given depth map, the depth sample value is converted into a sample-accurate

disparity vector. Then, each sample of the depth map is displaced by the disparity vector. If two or more samples are

displaced to the same sample location, the sample value that represents the minimal distance from the camera (i.e., the

sample with the larger value) is chosen. In general, the described mapping leads to sample locations in the target view to

which no depth sample value is assigned (black area in the middle picture of Figure 10). These areas represent parts of

the background that are uncovered due to the movement of the camera and can be filled using surrounding background

sample values. Therefore, a hole filling algorithm, which processes the converted depth map line by line, is used. Each

line segment that consists of successive sample location to which no value has been assigned is filled with the depth

value of the two neighbouring samples that represents a larger distance to the camera (i.e., the smaller depth value).

Figure 10: Mapping of a depth map into another view: (left) original depth map; (middle) converted depth map

after displacing the original samples; (right) final converted depth map after filling of holes.

The disparity vector used for inter-view motion or residual prediction of a block of the current picture is finally derived

based on the maximum value within the associated depth block.

2.2.3.1.2 Method 2: Depth/Disparity estimate based on coded disparity and motion vectors [Not in CTC]

The above described method 1 is only applicable if depth maps are included in the bitstream, and by using this method,

the video pictures (except the base view) cannot be decoded independently of the depth maps. In the following, a method

for deriving depth map estimates that only uses data that are available in the coded representations of the video pictures

is described. When using this method, one depth sample is derived for a 4x4 block of luma samples. Consequently, the

estimated depth maps have 1/4-th of the horizontal and vertical resolution of the luma components. The disparity vector

used for inter-view motion or residual prediction of a block of the current picture is finally derived based on the

maximum value within the associated depth block.

In random access units, all blocks of the base view picture, are intra-coded. In the pictures of dependent views, most

blocks are typically coded using DCP and the remaining blocks are intra-coded. When coding the first dependent view in

a random access unit, no depth or disparity information is available. Hence, candidate disparity vectors are derived using

a local neighbourhood, i.e., by conventional motion vector prediction. But after coding the first dependent view in a

random access unit, the transmitted disparity vectors are used for deriving a depth map estimate, as it is illustrated in

Figure 11. Therefore, the disparity vectors used for DCP are converted into depth values and all depth samples that

correspond to a disparity-compensated block are set equal to the derived depth value. The depth samples of intra-coded

blocks are derived based on the depth samples of neighbouring blocks; the used algorithm is similar to spatial intra

prediction. If more than two views are coded, the obtained depth map is mapped into other views using the method

described above and used as depth map estimate for deriving candidate disparity vectors. During this mapping, the

calculation of the disparity vectors takes into account that the estimated depth maps have 1/4-th of the horizontal and

vertical resolution of the luma components.

3D-HEVC

 3D-HEVC 15

Figure 11: Generation of an initial depth map estimate after coding the first dependent view of a random access

unit.

The depth map estimate for the picture of the first dependent view in a random access unit is used for deriving a depth

map for the next picture of the first dependent view. The basic principle of the algorithm is illustrated in Figure 12. After

coding the picture of the first dependent view in a random access unit, the derived depth map is mapped into the base

view and stored together with the reconstructed picture. The next picture of the base view is typically inter-coded. For

each block that is coded using MCP, the associated motion parameters are applied to the depth map estimate. A

corresponding block of depth map samples is obtained by MCP with the same motion parameters as for the associated

texture block; instead of a reconstructed video picture the associated depth map estimate is used as reference picture. The

block of depth samples that is associated with a block of luma samples has 1/4-th of the horizontal and vertical resolution

of the luma block. In order to simplify the motion compensation and avoid the generation of new depth map values, the

MCP for depth block doesn't involve any interpolation. The motion vectors are rounded to depth-sample-precision (1/4-

th of the luma sample precision) before they are used. The depth map samples of intra-coded blocks are again determined

on the basis of neighbouring depth map samples. Finally, the depth map estimate for the first dependent view, which is

used for the inter-view prediction of motion parameters, is derived by mapping the obtained depth map estimate for the

base view into the first dependent view.

Figure 12: Derivation of a depth map estimate for the current picture using motion parameters of an already

coded view of the same access unit.

After coding the second picture of the first dependent view, the estimate of the depth map is updated based on actually

coded motion and disparity parameters, as it is illustrated in Figure 13. For blocks that are coded using DCP, the depth

map samples are obtained by converting the disparity vector into a depth value. The depth map samples for blocks that

are coded using MCP are obtained by MCP of the previously estimated depth maps, similar as for the base view.

 3D-HEVC

16 3D-HEVC

In an optional configuration, new depth values are determined by adding a depth correction. The depth correction is

derived by converting the difference between the motion vectors for the current block and the corresponding reference

block of the base view into a depth difference. The depth values for intra-coded blocks are again determined by a spatial

prediction. The updated depth map is mapped into the base view and stored together with the reconstructed picture. It is

also used for deriving a depth map estimate for other views in the same access unit.

Figure 13: Update of depth map estimate for a dependent view based on coded motion and disparity vectors.

For all following pictures, the described process is repeated. After coding the base view picture, a depth map estimate for

the base view picture is determined by MCP using the transmitted motion parameters. This estimate is mapped into the

second view and used for the inter-view prediction of motion parameters. After coding the picture of the second view,

the depth map estimate is updated using the actually used coding parameters. At the next random access unit, the inter-

view motion parameter prediction is not used, and after decoding the first dependent view of the random access unit, the

depth map is re-initialized as described above.

2.2.3.1.3 Method 3: Disparity vector from neighbouring blocks

The disparity vector is derived from a motion vector of a spatial or temporal DCP neighbouring block or from a disparity

vector associated with an MCP neighbouring block. Once a disparity motion vector is found, the whole disparity vector

derivation process terminates.

First temporal DCP neighbouring blocks are evaluated as specified in section 2.2.3.1.3.2, followed by a check of the

spatial DCP neighbours, as specified in section 2.2.3.1.3.1. Finally, MCP coded neighbour blocks are searched as

described in section 2.2.3.1.3.3.

When no disparity motion vector is found from the neighbouring blocks, a zero disparity vector is used for inter-view

motion prediction.

3D-HEVC

 3D-HEVC 17

Figure 14: Location of spatial neighbour blocks

Figure 15: Location of temporal neighbour blocks in

temporal candidate pictures

2.2.3.1.3.1 Spatial Neighbouring Blocks

Five spatial neighbouring blocks are used for the disparity vector derivation. They are: the below-left, left, above-right,

above and above-left blocks of current prediction unit (PU), denoted by A0, A1, B0, B1 or B2, as defined in Figure 14.

To enable the DV derivation process to be performed in a parallel way two constraints on searched blocks are applied.

The first constraint is that DV are not derived from neighbouring blocks in the same CUs, when the CU contains two

PUs. Figure shows an example where for the second PU block A1 is not used for DV derivation .

Figure 16: Example: DV derivation for the second PU, block A1 is omitted to enable parallel processing

A second constraint is to search only the blocks that are also utilized in the merge scheme in the HEVC base

specification, when the DV is derived for the derivation of an inter-view merge candidate.

The checking order of the five spatial neighbouring blocks is: A1, B1, B0, A0 and B2.

2.2.3.1.3.2 Temporal Neighbouring Blocks

Up to two reference pictures from current view are treated as candidate pictures for temporal neighbours. The first

candidate picture is the co-located picture as used for Temporal Motion Vector Prediction (TMVP) in HEVC without

low delay check. The co-located picture is indicated in a slice header. The second picture is derived in the reference

picture lists with the ascending order of reference picture indices, and added into the candidate list, given as follows:

1) A random access point (RAP) is searched in the reference picture lists. If found, the RAP is placed into the

candidate list for the second picture and the derivation process is completed. In a case that the RAP is not

available for the current picture, go to step (2).

A1

B1 B2 B0

A0

Temporal DV predictor

(TDVP)

1
st

 PU 2
nd

 PU

 3D-HEVC

18 3D-HEVC

2) A picture with the lowest temporalID (TID) is searched out and placed into the candidate list of the temporal

pictures as the second entry.

3) If multiple pictures with the same lowest TID exist, a picture of less POC difference with the current picture is

chosen.

As shown in the above description, the second temporal candidate picture is chosen in a way that disparity motion

vectors can have more chance to be present in the picture. The derivation process of the second candidate picture can be

done in the slice level and be invoked only once per slice.

For each candidate picture up to two temporal neighbouring blocks BR and Centre as depicted in Figure 15 are searched.

The search order is: BR, Centre. The BR block is not considered when it is located below the lower CTU row of the

current CTU, as e.g. depicted in Figure 18Figure 17.

.

Figure 17: The BR temporal block below the lower CTU row is not considered

2.2.3.1.3.3 Disparity derivation from MCP coded neighbour blocks

In addition to the DCP coded blocks, blocks coded by motion compensated prediction (MCP) are also used for the

disparity derivation process. When a neighbour block is MCP coded block and its motion is predicted by the inter-view

motion prediction, as shown in Figure 18, the disparity vector used for the inter-view motion prediction represents a

motion correspondence between the current and the inter-view reference picture. This type of motion vector is referred to

as inter-view predicted motion vector (IvpMv) and the blocks are referred to as DV-MCP blocks in the sequel. The

motion correspondence is used for the disparity derivation process as explained in the following.

Figure 18: The inter-view predicted motion vector of a MCP coded block.

To indicate whether a blocks is DV-MCP block or not and to save the disparity vector used for the inter-view motion

prediction, two variables are used:

- IvpMvFlag

- IvpMvDisparityX.

The block whose motion vector is inter-view predicted is identified when the 0th motion parameter candidate of

MERG/SKIP mode is selected. In that case, the IvpMvFlag and IvpMvDisparityX corresponding to the location of

TL

CT

BR

Current PU

CTU boundary

V0 (independent view) (dependent view)

3D-HEVC

 3D-HEVC 19

current PU are set to 1 and the horizontal component of the disparity vector used for the inter-view motion prediction,

respectively.

The disparity vector is derived from SKIP coded DV-MCP blocks. When a block is coded by skip mode, neither mvd

(motion vector difference) data nor residual data is signalled, which implies that the disparity vector used for SKIP coded

DV-MCP block well describes the motion correspondence than the disparity vector used for DV-MCP blocks that are not

SKIP coded.

If DCP coded block is not found in the spatial and temporal neighbour blocks, then disparity derivation process scans the

spatial neighbour blocks for DV-MCP compensated in following order: A0, A1, B0, B1, B2. If a neighbour block is a

SKIP coded DV-MCP block, then the value of IvpMvDisparityX at the neighbour block is returned as the derived

disparity. The vertical component of the disparity vector is set equal to zero.

To reduce the amount of memory required for the derivation of the disparity from DV-MCP blocks, blocks B0, B1 and

B2 are only utilized when they are located in the current CTU. An example for this can be seen in Figure 19. Here only

spatial neighbour blocks A1 and A0 are utilized.

Figure 19: Example: For the derivation of the disparity from DV-MCP neighbouring blocks of the current PU,

above block B2, B1 and B0 are not used, since they are not located within the current CTU.

2.2.3.1.4 Method 4: Disparity vector derivation from a depth map of a different view component

While coding the texture of a dependent view, the decoded depth of the base view is already available. So the disparity

derivation needed for the coding of the texture of the dependent might be improved by utilizing the depth map of the

base view. A disparity vector (which might be a better estimate than a disparity vector derived with method 3) can be

extracted by the following steps:

1. A disparity vector is the derived by method 3.

2. The disparity vector is used to locate the corresponding block in the coded depth of the base view.

3. The depth in the corresponding block in the base depth is assumed to be the "virtual depth block" of the current

block in the dependent view.

4. The maximum value depth value of the virtual depth block (or alternatively of the centre and edge samples of the

virtual depth block) is retrieved.

5. The maximum depth value is converted to disparity

An example is depicted in Figure 20. The coded depth map in view 0 is denoted as Coded D0. The texture to be coded is

T1. For the current block (CB) a depth block in the coded D0 is derived using disparity vector estimated by method 3.

 3D-HEVC

20 3D-HEVC

Figure 20: Retrieval of the virtual depth block

2.2.3.2 Usage of Inter-View Motion Parameter Prediction

In HEVC, two different modes for signalling the motion parameters for a block are specified. In the first mode, which is

referred to as adaptive motion vector prediction (AMVP) mode, the number of motion hypotheses, the reference indices,

the motion vector differences, and indications specifying the used motion vector predictors are coded in the bitstream.

The second mode is referred to as merge mode. For this mode, only an indication is coded, which signals the set of

motion parameters that are used for the block. The inter-view motion parameter prediction has been added to both

modes, as will be described in the following.

Inter-view motion vector prediction in the AMVP mode

In the adaptive motion vector prediction (AMVP) mode, the number of motion hypotheses, the reference indices

specifying the used reference pictures, the motion vector differences, and indexes specifying the used motion vector

predictor are transmitted in the bitstream. For each motion hypothesis, a candidate list of motion vector predictors is

derived based on the coded reference index. This list includes motion vectors of neighbouring blocks that are associated

with the same reference index as well as a motion vector predictor which is derived based on the motion parameters of

the co-located block in a temporal reference picture. For including the inter-view motion parameter prediction, the

AMVP mode has been extended in a way that an inter-view motion vector predictor is added to the candidate list. It is

inserted at the first position of the list. Pruning between the inter-view motion vector predictor and spatial motion vector

predictors is not carried out.

To determine the inter-view motion vector prediction, a disparity vector and a corresponding block in a reference view

are derived as described above. If the reference index for the current block refers to an inter-view reference picture, the

inter-view motion vector predictor is set equal to the corresponding disparity vector. If the current reference index refers

to a temporal reference picture and the corresponding block uses a motion hypothesis that refers to the same access unit

as the current reference index, the motion vector that is associated with this motion hypothesis is used as inter-view

motion vector predictor. In all other cases, a zero motion vector is included in the list of motion vector predictor

candidates instead of the inter-view motion vector predictor.

Inter-view motion vector prediction in the merge mode (and skip mode)

In the merge mode of HEVC (as well as in the skip mode, which represents the merge mode without coding a residual

signal), basically the same motion parameters (number of hypotheses, reference pictures, and motion vectors) as for a

neighbouring block are used. If a block is coded in the merge mode, a candidate list of motion parameters is derived,

which includes the motion parameters of spatially neighbouring blocks as well as motion parameters that are calculated

based on the motion parameters of the co-located block in a temporal reference picture. The chosen motion parameters

are signalled by transmitting an index into the candidate list.

Similarly as for the AMVP mode, the candidate list of motion parameters is extended by a motion parameter candidate

for MCP (IvMC) that is obtained using inter-view motion prediction. Moreover a motion parameter candidate for DCP

constructed from the derived disparity (IvDC) is added. The derivation of both additional candidates is described in the

following.

For the derivation of the IvMC and the IvDC candidate, a corresponding block in a view component at the same time

instant as the current view component is utilized. The corresponding block is determined by shifting the position of the

current block using the disparity vector derived as described above.

CB

T1

Coded D0

Collocated depth

Estimated disparity vector

Virtual depth

3D-HEVC

 3D-HEVC 21

If the corresponding block is coded using MCP it is tested for each motion hypothesis of the current block, whether an

motion vector and a reference index can be derived for the IvMC candidate. This is the case if a picture is included in the

reference picture list belonging to the current slice and motion hypothesis with a picture order count equal to the picture

order count of a reference picture of the corresponding block. When such a picture is found the reference index of this

picture in the reference picture list belonging to the current slice and motion hypothesis and the motion vector of the

hypothesis of the corresponding block are used to derive the IvMC candidate.

To derive the IvDC candidate it is tested for each motion hypothesis of the current block, if the corresponding block is

located in an inter-view reference picture that is included in the reference picture list belonging to the current slice and

motion hypothesis. If such a reference picture is found, the IvDC candidate is constructed by using the derived disparity

as motion vector and the reference index of the found reference picture in the reference picture list of the current slice.

In the case that all motion parameter candidates are available, the position of the IvMC candidate is the first and the

position of the IvDC candidate is the fifth in the merge candidate list. Moreover pruning of the list is carried out if the

IvMC candidate or the IvDC candidate are equal to one of the motion parameter candidates of the spatially neighbouring

blocks A1 and B1.

2.2.3.3 Derivation of co-located motion vector candidate

The availability of the co-located vector is specified in Table 1. For AMVP the co-located motion vector is available for

motion vector prediction if the current PU utilized the same kind of prediction (inter prediction or inter-view prediction)

as the co-located PU. Otherwise, the co-located motion vector is not available.

For merge, when the target reference index specifies a reference picture in the same view, while the motion vector of the

co-located prediction unit (PU) is related to an inter-view reference picture or vice versa, the temporal motion vector

prediction (TMVP) candidate might still be available. Therefore an alternative target reference index is derived as

described in section 2.2.3.3.1.

In case that both, the current PU and the co-located PU, utilize inter-view prediction, inter-view motion vectors are

scaled for AMVP and merge as specified in section . 2.2.3.3.2.

Table 1: The availability of the co-located motion vector

Availability of co-located vector Prediction type of

current PU

Prediction type of

co-located PU
Merge AMVP

Available Available temporal temporal

Potentially available Not available temporal inter-view

Potentially available Not available inter-view temporal

Available Available inter-view inter-view

2.2.3.3.1 Derivation of the alternative reference index for merge

An alternative reference index is derived for merge, in case that the reference picture with the current target reference

index is a different kind of reference picture as the reference picture of the co-located PU.

When the reference picture with the current target reference index is an inter-view reference picture, but the reference

picture of the co-located PU is an temporal reference picture, the current target reference index is modified to be the first

reference index in the reference picture list of the current block, that specifies an inter-view reference picture.

When the reference picture with the current target reference index is a temporal reference picture, but the reference

picture of the co-located PU is an inter-view reference picture, the current target reference index is modified to be the

first reference index in the reference picture list of the current block, that specifies a temporal reference picture.

2.2.3.3.2 Scaling of inter-view motion vectors

The scaling function for inter-view motion vectors is the same as that in temporal MV scaling, but the scaling factors are

derived differently. In case of temporal MV scaling the scaling factor “tb” is the difference between POC of coding

block and coding reference block and “td” is the difference between POC of co-located block and this reference block. In

case of inter-view scaling, the scaling factors “tb” and “td” are calculated with the difference between view order indices

of each block instead of POCs, Hence:

 DistScaleFactor = Clip3(–1024, 1023, (tb * tx + 32) >> 6)

tx = (16384 + Abs(td / 2)) / td

 3D-HEVC

22 3D-HEVC

where td and tb are derived as:

 td = Clip3(–128, 127, ColViewOrderIdx –

 ColRefViewOrderIdx)

tb = Clip3(–128, 127, CurrViewOrderIdx – CurrRefViewOrderIdx)

The variables in the above equations are specified as follows:

 CurrViewOrderIdx :ViewOrderIdx of current picture

 ColViewOrderIdx :ViewOrderIdx of co-located picture

 CurrRefViewOrderIdx :ViewOrderIdx of the picture that is

referenced by the current picture

 ColRefViewOrderIdx :ViewOrderIdx of the picture that is

referenced by the co-located picture

An example for the scaling of inter-view motion vectors is depicted in Figure 21. The coding block refers to the

reference picture of V0 and the neighbouring block refers to the picture of V2. The predictive vector from neighbouring

block is scaled since the difference of view index (V1-V0) between coding block and coding reference block is not equal

to that (V1-V2) between neighbouring block and this reference block.

Figure 21: Inter-view motion vector scaling in AMVP and TMVP

[Ed. (GT): In the normative annex the meaning of view identifier and view order index has been swapped. ViewOrderIdx

here and in software describes a coding order independent value, that might be chosen to represent spatial positions.]

2.2.4 Depth-based motion parameter prediction [Not in SW]

Depth-Based Motion Prediction (DBMP) is a new coding tool for multiview video coding which originates from the idea

that motion fields of neighbouring views in multiview sequence are highly correlated. DBMP provides an efficient

representation of motion data in multiview video bitstreams that carry also depth/disparity maps. The motion

information, such as motion vectors and reference indices, for each pixel of encoded coding unit (CU)

is directly inferred with use of already coded disparity maps from encoded CUs in the neighbouring views at the same

temporal instance (Figure 22). This procedure is repeated independently for every pixel of encoded CU. Consequently,

motion vectors and reference indices for CU are not transmitted in the bitstream but are obtained from the reference view

at the receiving side.

P0 P1 P2

V0

V1

V2

Inter-view

reference picture

Inter-view

reference picture

NeibBlock

CodingBlock ColBlock

ColRefBlock

CodingRefBlock

NeibRefBlock

Scaling

inter-view vector

3D-HEVC

 3D-HEVC 23

Figure 22: Independent derivation of motion information for each point of encoded CU from corresponding point

in reference view.

2.2.5 Inter-view residual prediction

Similarly as for the inter-view motion prediction, the inter-view residual prediction is based on a disparity estimate for

the current picture. The same disparity estimate as for the inter-view motion prediction is used. Depending on the

encoder configuration, the disparity estimate is derived by one of the methods described in sec. 2.2.3.1. A disparity

vector is determined for a current block and the residual block in the reference view that is referenced by the disparity

vector is used for predicting the residual of the current block.

The disparity vector is added to the location of the top-left sample of the current block yielding the location of the top-

left sample of the reference block. Then, similar as for motion compensation, the block of residual samples in a reference

view that is located at the derived reference location is subtracted from the current residual and only the resulting

difference signal is transform coded. If the disparity vector points to a sub-sample location, the residual prediction signal

is obtained by interpolating the residual samples of the reference view using a bi-linear filter.

Inter-view residual prediction is applied for 2Nx2N PUs that select the temporal inter-view merging candidate of merge

or skip mode. No explicit signalling is required .

2.2.6 Illumination compensation (IC)

A linear illumination compensation model is utilized to adapt luminance and chrominance of inter-view predicted blocks

to the illumination of the current view. The parameters of the linear model are estimated for each PU using reconstructed

neighbouring samples of the current block and of the reference block used for prediction.

[Ed. (GT). Some more information specifying how the linear parameters are computed, which samples are used for

computation and how the computation is realized using the LUT would be helpful here.]

To reduce the encoding time, the rate distortion optimized (RDO) selection, whether to enable illumination compensation

is not carried out for all inter modes. Instead of this, first a RDO selection between IC on and IC off is performed for the

Merge mode with 2Nx2N partitioning. When IC is chosen in this test, IC is switched on when testing the following inter

modes.

The illumination compensation algorithm is also applied to depth data.

2.2.7 Adjustment of QP of texture based on depth data [Not in SW]

In order to improve perceptual quality of coded texture, a tool for bit assignment in the texture layer was developed. The

basic idea is to increase texture quality of objects in the foreground and to increase compression factor (decrease texture

quality) for objects in the background. The quality is adjusted in coding units (CUs) with use of quantization parameter

QP that depends on the corresponding depth values. The QP adjustment is done simultaneously in coder and decoder so

that no additional information is send. Described tool is disabled in the base view to preserve HEVC compatibility. The

texture QP is modified in the following way:

Where is adjusted value for a CU with corresponding disparity .

 3D-HEVC

24 3D-HEVC

2.3 Coding of Depth Maps

For the coding of depth maps, basically the same concepts of intra-prediction, motion-compensated prediction, disparity-

compensated prediction, and transform coding as for the coding of the video pictures are used. However, some tools have

been modified for depth maps, other tools have been generally disabled, and additional tools have been added.

As a first difference to the coding of video pictures, the inter-view motion and residual prediction as described in

sec. 2.2.2 and sec. 2.2.4, respectively, are not used for depth coding. Instead, motion parameters are derived based on

coded data in the associated video pictures as will be described in sec. 2.3.7 below. The other differences are described in

the following subsections.

2.3.1 Disabled chrominance coding [Not in SW]

Depth maps may be coded in 4:0:0 chroma sampling format.

2.3.2 Non-linear depth representation [Not in SW]

As alternative representation of depth maps, the depth may be non-linearly scaled as described in the following.

The human perception of depth depends on absolute distance of viewed objects, therefore the internal depth

representation is non-linear. Closer objects are represented more accurately than distant ones. Thanks to that, subjective

quality of synthesized views is improved.

Internal depth sample values are defined by the following power-law expressions, similar as in the case of well-known

gamma correction:

Exponent is automatically chosen by the encoder with use of base QP for the depth and sent to decoder in the encoded

bitstream:

Depth map samples are represented on increased number of bits with use of IBDI (Internal Bit Depth Increase) tool.

2.3.3 Z-near z-far compensated weighted prediction [Not in SW]

Proposed znear-zfar compensation (ZZC) is a new coding tool for multiview video, designed especially for inter-frame

depth map coding.

The concept of ZZC exploits the observation that frames from different views and time instances of encoded depth

sequence may have different znear and zfar parameters. The mentioned znear and zfar parameters describe range of depths

represented in a gray-scale depth map. If znear and zfar parameters are different for two frames, then given depth value is

represented with different gray-scale values in those depth maps. Consequently, using one of such depth maps as a

reference for the other one will result in a poor prediction.

To overcome this problem, a new ZZC coding tool is proposed. Prior to any inter-frame depth map prediction, each

depth map that resides on the codec reference picture list is scaled, so that gray-scale depth values in scaled image and

currently coded image refer to the same depth.

As a result, depth maps with compensated znear and zfar range are used for prediction.

Values used for prediction (instead of the original ones) are calculated as follows:

Where LT is compensated disparity in range depth znearT tozfarT and LS is original disparity in depth range znearS and zfarS.

2.3.4 Modified motion compensation and motion vector coding

In contrast to natural video, depth maps are characterized by sharp edges and large regions with nearly constant values.

The eight-tap interpolation filters that are used for motion-compensated interpolation in HEVC, can produce ringing

artefacts at sharp edges in depth maps, which are visible as disturbing components in synthesized intermediate views. For

avoiding this issue and for decreasing the encoder and decoder complexity, the motion-compensated prediction (MCP) as

well as the disparity-compensated prediction (DCP) has been modified in a way that no interpolation is used. That

3D-HEVC

 3D-HEVC 25

means, for depth maps, the inter-picture prediction is always performed with full-sample accuracy. For the actual MCP

or DCP, a block of samples in the reference picture is directly used as prediction signal without interpolating any

intermediate samples. In order to avoid the transmission of motion and disparity vectors with an unnecessary accuracy,

full-sample accurate motion and disparity vectors are used for coding depth maps. The transmitted motion vector

differences are coded using full-sample instead of quarter-sample precision.

2.3.5 Disabling of in-loop filtering

The in-loop filters in the HEVC design have been particularly designed for the coding of natural video. For the coding of

depth maps, these filters are less useful. In order to decrease the encoder and decoder complexity, the in-loop filters have

been disabled for depth coding. This includes the following filters:

 the de-blocking filter;

 the adaptive loop filter (Wiener filter);

 the sample-adaptive loop filter.

2.3.6 Depth modelling modes

Depth maps are mainly characterized by sharp edges (which represent object borders) and large areas of nearly constant

or slowly varying sample values (which represent object areas). While the HEVC intra prediction and transform coding

is well-suited for nearly constant regions, it can result in significant coding artefacts at sharp edges, which are visible in

synthesized intermediate views. For a better representation of edges in depth maps, four new intra prediction modes for

depth coding are added. In all four modes, a depth block is approximated by a model that partitions the area of the block

into two non-rectangular regions, where each region is represented by a constant value. The information required for

such a model consists of two elements, namely the partition information, specifying the region each sample belongs to,

and the region value information, specifying a constant value for the samples of the corresponding region. Such a region

value is referred to as constant partition value (CPV) in the following. Two different partition types are used, namely

Wedgelets and Contours, which differ in the way the segmentation of the depth block is derived. The depth modelling

modes are integrated as an alternative to the conventional intra prediction modes specified in HEVC. Similar as for the

intra prediction modes, a residual representing the difference between the approximation and the original depth signal

can be transmitted via transform coding. In the following, the approximation of depth blocks using the four new depth

modelling modes is described in more detail.

It is differentiated between Wedgelet and Contour partitioning. For a Wedgelet partition, the two regions are defined to

be separated by a straight line, as illustrated in Figure 23, in which the two regions are labelled with and . The

separation line is determined by the start point and the end point , both located on different borders of the block. For

the continuous signal space (see Figure 23, left), the separation line can be described by the equation of a straight line.

The middle image of Figure 23 illustrates the partitioning for the discrete sample space. Here, the block consists of an

array of samples with size and the start and end points correspond to border samples. Although the separation

line can be described by a line equation as well, the definition of regions and is different here, as only complete

samples can be assigned as part of either of the two regions. For employing Wedgelet block partitions in the coding

process, the partition information is stored in the form of partition patterns. Such a pattern consists of an array of size

 and each element contains the binary information whether the corresponding sample belongs to region or .

The regions and are represented by black and white samples in Figure 23 (right), respectively.

Figure 23: Wedgelet partition of a block: continuous (left) and discrete signal space (middle) with corresponding

partition pattern (right).

Unlike for Wedgelets, the separation line between the two regions of a Contour partition of a block cannot be easily

described by a geometrical function. As illustrated in Figure 24, the two regions and can be arbitrary shaped and

even consist of multiple parts. Apart from that the properties of Contour and Wedgelet partitions are very similar. For

employing Contour partitions in the coding process, the partition pattern (see example in Figure 24, right) is derived

 3D-HEVC

26 3D-HEVC

individually for each block from the signal of a reference block. Due to the lack of a functional description of the region

separation line, no pattern lookup lists and consequently no search of the best matching partition are used for Contour

partitions.

Figure 24: Contour partition of a block: continuous (left) and discrete signal space (middle) with corresponding

partition pattern (right).

Apart from the partition information, either in form of a Wedgelet or a Contour partition, the second information

required for modelling the signal of a depth block is the CPV of each of the two regions. For a given partition the best

approximation is consequently achieved by using the mean value of the original depth signal of the corresponding region

as the CPV.

Four depth-modelling modes, which mainly differ in the way the partitioning is derived and transmitted, have been

added:

 Mode 1: Explicit Wedgelet signalling;

 Mode 2: Intra-predicted Wedgelet partitioning;

 Mode 3: Restricted signalling and inter-component prediction of Wedgelet partitions;

 Mode 4: Inter-component-predicted Contour partitioning.

These depth-modelling modes as well as the signalling of the modes and the constant partition values are described in the

following four subsections.

2.3.6.1 Mode 1: Explicit Wedgelet Signalization

The basic principle of this mode is to find the best matching Wedgelet partition at the encoder and transmit the partition

information in the bitstream. At the decoder the signal of the block is reconstructed using the transmitted partition

information.

The Wedgelet partition information for this mode is not predicted. At the encoder, a search over a set of Wedgelet

partitions is carried out using the original depth signal of the current block as a reference. During this search, the

Wedgelet partition that yields the minimum distortion between the original signal and the Wedgelet approximation is

selected. The resulting prediction signal is then evaluated using the conventional mode decision process.

A fast search of the best matching partition is essential for employing Wedgelet models in the depth coding process. This

fast search algorithm is further described in section 2.3.6.7.

2.3.6.2 Mode 2: Intra-predicted Wedgelet Partitions

The basic principle of this mode is to predict the Wedgelet partition from data of previously coded blocks in the same

picture, i.e. by intra-picture prediction. For a better approximation, the predicted partition is refined by varying the line

end position. Only the offset to the line end position is transmitted in the bitstream and at the decoder the signal of the

block is reconstructed using the partition information that results from combining the predicted partition and the

transmitted offset.

3D-HEVC

 3D-HEVC 27

Figure 25: Intra prediction of Wedgelet partition (blue) for the scenarios that the above reference block is either

of type Wedgelet partition (left)or regular intra direction(right).

The prediction process of this mode derives the line start position and the gradient from the information of previously

coded blocks, i.e. the neighbour blocks left and above of the current block. Note that for some blocks one or both of the

neighbouring blocks are not available. In such a case the processing for this mode is carried out with setting the missing

information to meaningful default values. As illustrated in Figure 25 two main prediction methods have to be

distinguished: The first method covers the case when one of the two neighbouring reference blocks is of type Wedgelet,

shown in the example in Figure 25, left. The second method covers the case when the two neighbouring reference blocks

are not of type Wedgelet, but of type intra direction, which is the default intra coding type, shown in the example in

Figure 25, right.

If the reference block is of type Wedgelet, the prediction process works as follows: The principle of this method is to

continue the reference Wedgelet into the current block, which is only possible if the continuation of the separation line of

the reference Wedgelet actually intersects the current block. Therefore, it is first checked whether it is possible to

continue the reference Wedgelet. In case the check is positive, the start position and the end position are predicted

by calculating the intersection points of the continued line with block border samples.

If the reference block is of type intra direction, the prediction process works as follows: First, the gradient is derived

from the intra prediction direction. As the intra direction is only provided in the form of an abstract index, a mapping or

conversion function is defined that associates each intra prediction mode with a gradient. Second, the start position is

derived from information that is also available at the decoder, namely the adjacent samples of the left and above

neighbouring block, by selecting the sample position with the maximum slope. Finally, the end position is calculated

from the start point and the gradient.

The line end position offset for refining the Wedgelet partition is not predicted, but searched within the estimation

process at the encoder. For the search, candidate partitions are generated from the predicted Wedgelet partition and an

offset value for the line end position , as illustrated in Figure 25. By iterating over a range of offset values and

comparing the distortion of the different resulting Wedgelet partitions, the offset value of the best matching Wedgelet

partition is determined using a distortion measure.

2.3.6.3 Mode 3: Restricted signalling and inter-component prediction of Wedgelet partitions

The basic principle of this mode is to signal a Wedgelet partition as index to a restricted set of Wedgelet partitions. To

restrict the set two methods can be applied. The first method predicts probable Wedgelet partitions from a texture

reference block, namely the co-located block of the associated video picture. This type of prediction is referred to as

inter-component prediction. Unlike temporal or inter-view prediction, no motion or disparity compensation is used, as

the texture reference picture shows the scene at the same time and from the same perspective.

 3D-HEVC

28 3D-HEVC

Figure 26: Prediction of Wedgelet (blue) and Contour (green) partition information from texture luma reference.

The prediction of a Wedgelet partition pattern from the texture reference is illustrated in the top row of Figure 26. It can

be observed that the luma intra direction correlates with the edge direction in the depth data, therefore the set of possible

Wedgelet partitions can be restricted utilizing this information as described in section 2.3.6.6.

The second method can be used when the co-located texture block is not intra coded. In this case the possible Wedgelet

partitions are restricted to a coarse subset of partitions utilized in Mode 1. The search for the Wedgelet partition is carried

out as specified in section 2.3.6.7, however the refinement step as described there is not applied for Mode 3..

2.3.6.4 Mode 4: Inter-component prediction of Contour partitions

The basic principle of this mode is to predict a Contour partition from a texture reference block by inter-component

prediction. Like for the inter-component prediction of a Wedgelet partition pattern, the reconstructed luminance signal of

the co-located block of the associated video picture is used as a reference, as illustrated in the bottom row of Figure 26.

In contrast to Wedgelet partitions, the prediction of a Contour partition is realized by a thresholding method. Here, the

mean value of the texture reference block is set as the threshold and depending on whether the value of a sample is above

or below the sample position is marked as part of region or in the resulting Contour partition pattern.

2.3.6.5 Constant partition value coding

The method for CPV coding is the same for all four modes introduced above, as it does not distinguish between partition

types, but rather assumes that a partition pattern is given for the current depth block. As illustrated in Figure 27, three

types of CPVs are differentiated: original, predicted, and delta CPVs.

Figure 27: CPVs of block partitions: CPV prediction from adjacent samples of neighbouring blocks (left) and

cross section of block (right), showing relation between different CPV types.

The cross section of the block in Figure 27, right, schematically shows that the original CPVs are calculated as the mean

value of the signal covered by the corresponding region. Although these values lead to the best approximation for the

given partition, they are not available at the decoder as they require the original signal. Therefore prediction of CPVs is

introduced. These predicted CPVs are derived from information that is also available at the decoder, namely the adjacent

samples of the neighbouring left and top block (or some of them for large PU sizes), as illustrated in Figure 27, left,

where the green and light green line segments highlight the mapping of adjacent samples to the partitions. Again, the

predicted CPVs are calculated as the mean value of the corresponding sample values. Depending on the similarity

between original signal of the block and adjacent samples, the predicted and original CPVs may differ significantly. This

difference is referred to as delta CPVs. By calculating the delta CPVs at the encoder and transmitting them in the bit

stream, it is possible to reconstruct the CPVs at the decoder.

3D-HEVC

 3D-HEVC 29

Depending on the Intra Mode of the current prediction unit, delta CPVs can be determined and signalled in two different

ways. Quantized signalling is used for region boundary chain coding as described in section 2.3.7. Signalling without

quantization is applied for the DMM modes described in this section.

Quantized signalling

Although the distortion of the reconstructed signal is considerably reduced by the delta CPVs, the benefit of this

approach is delimited by the additional bit rate required for transmitting the delta CPVs. Therefore, a linear quantization

is introduced for the delta CPVs. This method is also used in transform coding and the step size of the quantization is set

as a function of the QP. The delta CPVs are linearly quantized at the encoder and de-quantized before reconstruction at

the decoder.

In case the distortion is not measured for the original depth, but for synthesized views, the delta CPV derivation process

is extended by a minimum distortion search, which iterates over all possible delta CPV combinations for the two

partitions. For the sake of efficient processing and signalling the range of tested values is limited. The search results in

the combination of delta CPVs that causes the minimum distortion in synthesized views and for transmission these

values are finally quantized.

Signalling without quantization

Compared to quantized signalling the search strategy for offset estimation in DMM modes of the current deltaDC

scheme is modified to obtain the coding gain of using un-quantized partition offset values without suffering from the

considerable increase in encoder complexity.

The optimized search strategy basically consists of a coarse search and a refinement step. In more detail the search works

as follows: Initially the distortion of using the partition values that are calculated as the mean value of the original

sample values covered by the corresponding region is determined. For SDC as described in section 2.3.8 the offset

between these values and the predicted partition values is simply transmitted without a VSO-based minimum distortion

search. However, for DMM modes the search tests all combinations of offset values in a certain range around the

predicted and original partition values. The limits of the search range start from an offset value of 0 and the upper limit is

restricted by the actual range of depth values. First, a coarse search is carried out, testing offset values at intervals of 4.

For each tested combination of offset values the distortion is compared to the initial distortion achieved with the original

partition values. Only if at least one of the coarse offset combinations leads to a smaller distortion than the original

partition values, the refinement step is carried out for the best coarse combination. The refinement step simply consists of

testing all offsets in the range of [-3, 3] around the best coarse offset combination.

 3D-HEVC

30 3D-HEVC

Figure 28: Optimized search strategy for non-quantized partition offset values.

2.3.6.6 Co-located Texture Luma Block intra direction constraint

For DMM mode 3, the intra direction of the co-located texture luma block can be utilized to constrain the set of possible

Wedgelet partitions and the Wedgelet search at the encoder to most probable Wedgelet directions. Basically, the

wedgelet search consists of two parts: first, for each intra direction, a restricted Wedgelet list is initialized with Wedgelet

patterns sharing the similar directionality of the intra direction, second, during the Wedgelet search, only the Wedgelet

patterns included in the Wedgelet list for the intra direction of co-located texture luma block are considered. For

transmission the found Wedgelet partition is then signalled as an index to the restricted Wedgelet list.

Wedgelet list generation for each intra direction. To generate the Wedgelet list, each Wedgelet pattern index idxW is

first mapped to an intra direction widx by applying the following steps:

 For each intra direction i from 2 to 34, Di is calculated as Di = | Vi (Xs-Xe) - Hi (Ye-Ys) |, where Hi and Vi are

obtained from Table 1, (Xs, Ys) and (Xe, Ye) indicate the start and end point position of the Wedgelet pattern,

respectively.

 The Wedgelet pattern index idxW is mapped to the intra direction widx which minimizes D among all intra

directions.

Table 1: Values of H and V for angular intra directions

intra direction 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

H 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32

V 32 26 21 17 13 9 5 2 0 -2 -5 -9 -13 -17 -21 -26 -32

intra direction 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

H 26 21 17 13 9 5 2 0 2 5 9 13 17 21 26 32

V -32 -32 -32 -32 -32 -32 -32 32 32 32 32 32 32 32 32 32

Then for each intra direction pidx a Wedgelet list is constructed that includes all the Wedgelet patterns with mapped intra

direction widx satisfying | widx - pidx | ≤ 1.

Wedgelet search. The intra direction of co-located texture luma block is first derived as pidx, then only the Wedgelet

patterns in the Wedgelet list of intra direction pidx is used in the Wedgelet search function as described in section

2.3.6.7, thus large portion of Wedgelet searches are skipped.

2.3.6.7 Coarse wedgelet search with refinement step

The coarse search with refinement step is used at the encoder side for DMM mode 1 and DMM mode 3. The search

method basically consists of three steps: first, the wedgelet pattern list is initialized. In the second step a coarse subset of

the Wedgelet pattern list is searched for the minimum distortion partition. The resulting Wedgelet partition is refined in

the third step.

Wedgelet pattern list initialization. The Wedgelet pattern lists are generated during encoder and decoder initialization.

For this purpose, the patterns for all possible combinations of start and end point positions are generated and stored in a

lookup table for each block size prior to the coding process. The Wedgelet pattern list contains only unique patterns. The

resolution for the start and end positions used for generating the Wedgelet patterns depends on the block size. For 16x16

and 32x32 blocks, the possible start and end positions are restricted to locations with an accuracy of 2 samples. For 8x8

blocks, full-sample accuracy is used, and for 4x4 blocks, half-sample accuracy is used

A coarse subset of Wedgelet patterns are marked by a flag during the list generation process. The subset contains the

Wedgelets for every second start and end position (see Fig. 1, left). Furthermore, a Wedgelet node is derived for each

Wedgelet of the coarse subset, containing up to eight references to refinement Wedgelets (see Fig. 1, right).

3D-HEVC

 3D-HEVC 31

Figure 29: Coarse subset of Wedgelet separation line start/end positions (left) and Wedgelet node with

refinements (right).

Search function. The following search algorithm is applied to find the Wedgelet within the pattern list, that provides the

minimal distortion: In a first step the minimum distortion Wedgelet pattern is searched for the coarse subset by iterating

over the Wedgelet node list and testing the referenced pattern. In a second step the Wedgelet partition found in the first

step is refined. For this purpose the minimum distortion Wedgelet pattern is searched from the up to eight refinement

patterns referenced in the corresponding node.

2.3.6.8 Mode selection

In the encoding process, for an intra-coded CU, one of the described depth modelling modes or one of the conventional

intra prediction modes is selected. If a depth modelling mode is selected, the selected mode and the associated prediction

data have to be signalled in the bitstream in addition to a syntax element that specifies the usage of a depth modelling

mode. The following four depth modelling modes are defined:

 Wedgelet_ModelIntra: Intra modelling of Wedgelet block partition

 Wedgelet_PredIntra: Intra prediction of Wedgelet block partition

 Wedgelet_PredTexture: Inter-component prediction of Wedgelet block partition

 Contour_PredTexture: Inter-component prediction of Contour block partition

Each of the four modes can be applied with or without delta CPVs, resulting in eight different mode_IDs for signalling

the decoder, which type of processing has to be applied for prediction and reconstruction of the block.

2.3.6.9 Signalling in the bitstream

The depth modelling modes are implemented as an additional set of block coding modes into the intra path of the 3D

video codec. Therefore, an additional flag prior to the mode information is transmitted in the bitstream, signalling

whether a block partition mode is used or not. In case this flag is not set, normal intra mode signalling follows.

Otherwise, a mode ID is signalled, which specifies the actual block partition mode and if delta CPVs are also transmitted

or not. The number of bins required depends on the decision of the mode pre-selection methods, ranging from three bins,

if all eight modes are enabled, to one bin, if the number of modes is reduced to two due to pre-selection decisions

described in sec. 0.

Mode Wedgelet_ModelIntra: For this mode the Wedgelet partition information is explicitly signalled in the bitstream by

the index of the corresponding pattern in the Wedgelet pattern lookup list. The index is signalled with a fixed number of

bins. The number of bins used for transmitting the index is given by the size of the list of possible Wedgelet patterns.

Mode Wedgelet_PredIntra: For this mode only the refinement of the Wedgelet partition in terms of the line end position

offset is signalled in the bitstream. A first bin indicates whether the offset is zero or not. If the offset is not zero,
 additional bins follow for signalling offset values in the range , where the first bin represents the sign and the

remaining bins the absolute value of the offset. is set equal to 2.

Mode Wedgelet_PredTexture: For this mode the Wedgelet partition information is explicitly signalled in the bitstream

by the index of the corresponding pattern in a restricted Wedgelet pattern lookup list. The index is signalled with a fixed

number of bins. The number of bins used for transmitting the index is given by the size of the list of possible Wedgelet

patterns.

Mode Contour_PredTexture: For this mode no additional signalling regarding the partition information is required.

Delta CPVs: In case the delta CPVs are transmitted (which is signalled by the transmitted mode ID), the two quantized

values are signalled in the bitstream consecutively. For each CPV, a bin string consisting of the absolute value and the

sign is transmitted. The sign is coded as a single bin, and the absolute value is coded using a truncated unary code (with

13 bins in the unary part and an exponential golomb code suffix).

2.3.7 Region boundary chain coding

The region boundary chain coding mode partitions the block into two regions by signalling the region boundaries with

chain codes. The region boundary chain coding consists of four steps.

Step 1: Find internal edges

The internal edges inside a depth-map block are calculated in the encoder. The step consists of several procedures.

i) Calculate differences between vertically and horizontally adjacent pixels.

ii) Mark as edge candidates if the difference is greater than the threshold.

iii) Eliminate the edge candidates which have smaller differences than neighbouring edge candidates.

iv) Connect unlinked edges if necessary.

v) Prune unconnected edges.

vi) Check whether the block consists of two regions exactly. Otherwise, the method will not be applied further.

 3D-HEVC

32 3D-HEVC

Step 2: Code the edges using chain codes

The edges are encoded by using chain codes. First, an edge starts from the block boundaries. Then, the next edge is

chosen as an edge connected to the current one. The final edge ends at the boundaries. To construct chain codes, it

defines seven traverse types (0, 45, -45, 90, -90, 135, and -135 degree) and their edge patterns. Figure 30 shows the

patterns when the previous pixel is the left one (grey arrow). The patterns of other directions differ from the figure but

can be constructed in the same manner.

Figure 30: Reconstructed edge using the relationship between previous and current directions

Step 3: Convert the chain codes into bitstream syntax

The region boundaries are expressed as a set of an edge starting point and the traverse codes.

Step 4: Calculate the predictors and fill them into the block

After the regional average values are chosen as the predictors for partitioned regions, the method for constant partition

value (CPV) coding described in 2.3.6.5 can be applied to the mean value of the signal covered by the corresponding

region.

2.3.7.1 Signalling in the bitstream

The region boundary chain coding modes are implemented as an additional set of block coding modes into the intra path

of the 3D video codec. When rem_intra_luma_pred_mode is equal to 31, an additional flag is transmitted in the

bitstream, signalling whether a region boundary chain coding mode is used or not.

Two syntax elements (edge_start_left_flag and edge_start_position) are used to determine the starting point. And the

traverse codes are signalled with num_edge_codes_minus1 and edge_code as described in Figure 31. The edge_code is

constructed to have a different code word length according to the frequency of traverse types.

In case the CPVs are transmitted (which is signalled by edge_dc_flag), two quantized values are signalled in the

bitstream consecutively. For each CPV, a bin string consisting of the absolute value and the sign is transmitted. The sign

is coded as a single bin, and the absolute value is coded using a truncated unary code (with 13 bins in the unary part and

an exponential golomb code suffix).

: previous traverse : current traverse : reconstructed edge

0˚ 45˚ -45˚

135˚ -90˚ 90˚ -135˚

3D-HEVC

 3D-HEVC 33

Figure 31: Example of region boundary chain coding

2.3.8 Simplified depth coding

The Simplified Depth Coding (SDC) approach is an alternative intra coding mode. Whether SDC is used is signalled by

a SDC flag at CU level. For SDC the depth block is intra predicted by a conventional intra mode or depth modelling

mode 1. The partition size of SDC coded CU is always 2Nx2N and therefore not signalled in the bitstream. Moreover the

residual is not coded as quantized transform coefficients but one or two constant residual values are signalled.

In summary following information are signalled for SDC-coded blocks:

1. The type of segmentation/prediction of the current block. Possible values are

a. DC (1 segment)

b. DMM Mode 1 – Explicit Wedgelets (2 segments)

c. Planar (1 segment)

2. For the DMM mode, additional prediction information is coded, as described in section 2.3.6

3. For each resulting segment, a residual value (in the pixel domain) is signalled in the bitstream

Before coding, the residual values are mapped to values, which are present in the original, uncompressed depth map by

using a Depth Lookup Table (DLT). Consequently, residual values can be coded by signalling only the index into this

lookup table, which reduces the bit depth of residual magnitudes. This mapping table is transmitted to the decoder for the

inverse lookup from index to valid depth value.

The advantage of using this lookup table is the reduced bit depth of the residual index for sequences with reduced depth

value range (e.g. all estimated depth maps where not all depth values are present).

At the encoder side the Residual index to be coded into the bitstream, is given by

with denoting original depth value, denoting the predicted depth value, and denoting the Index Lookup

Table and denoting the number of valid depth values.

The computed residual index is then coded with a significance flag, a sign flag and with bits for the

magnitude of the residual index.

2.3.8.1 Depth Lookup Table

The Depth Lookup Table utilizes the property of the depth map, that the full available depth range of values is not

utilized. Only a small amount of different depth levels occur due to strong quantization. In the encoder, a dynamic depth

lookup-table is constructed by analysing a certain number of frames (e.g. one intra period) of the input sequence. This

depth lookup-table is used during the coding process to reduce the effective signal bit-depth of the residual signal.

30 30 60 60

25 35 58 60

30 63 60 60

30 65 60 60

Original depth-map Step 1: find internal edges

(with threshold = 20)

30 30 60 60

25 35 58 60

30 63 60 60

30 65 60 60

30 30 60 60

25 35 58 60

30 63 60 60

30 65 60 60

Step 2: construct chain codes

Starting point : [2,0]

Chain code : 0˚, -45˚, 45˚

Step 3: convert codes into syntax

edge_start_left_flag = 0

edge_start_position = 10

edge_count_minus_1 = 010

edge_code[0] = 0

edge_code[1] = 110

edge_code[2] = 10

 3D-HEVC

34 3D-HEVC

2.3.8.1.1 Construction of the depth lookup table

In encoder reads a pre-defined number of frames from the input video sequence to be coded and scans all samples for

available depth map values. During this process a mapping table is generated that maps depth values to valid depth

values based on the original uncompressed depth map.

The Depth Lookup Table , the index Lookup Table , the Depth Mapping Table and the number of valid

depth values are derived by the following algorithm, that analyses the depth map

1. Initialization

 boolean vector for all depth values

 index counter

2. Process each pixel position in for multiple time instances :

 Set to mark valid depth values

3. Count number of values in

4. For each with :

 Set

 Set

 Set

5. For each with :

 Find and

 Set

6. Set

2.3.9 Motion parameter inheritance

The basic idea behind the motion parameter inheritance (MPI) mode is that the motion characteristics of the video signal

and its associated depth map should be similar, since they are both projections of the same scenery from the same

viewpoint at the same time instant. Therefore, in order to enable efficient encoding of the depth map data, a texture

candidate for the merge mode in depth coding that allows the inheritance of motion parameters from the texture signal

has been introduced. The derivation of the texture candidate for depth is depicted in figure Figure 32. The motion

parameters of the corresponding texture block are added as candidate to the merge list of the PU in the depth picture.

Figure 32: The derivation of corresponding texture block

Since the motion vectors of the video signal have quarter-sample accuracy, whereas for the depth map signal only full-

sample accuracy is used, in the inheritance process the motion vectors are quantized to their nearest full-sample position.

[Ed. (GT): This is currently not reflected in draft, but might be added:

Corresponding
texture picture Depth picture

.
Current PU

.

. Corresponding
texture block

3D-HEVC

 3D-HEVC 35

Since, when using MPI, not only the partitioning and the motion vectors, but also the reference picture indices are

inherited from the video signal, it has to be ensured, that the depth maps that correspond to the video reference pictures

are also available in the reference picture buffer for the depth map signal.]

2.3.10 Depth Quadtree Prediction

Depth quadtree prediction performs a prediction of the depth quadtree from the texture quadtree. It is applied in inter

slices that do not belong to random access pictures. The partitioning of the depth is limited to the same level as the

partitioning of the texture. For a given CTU, the quadtree of the depth is linked to the collocated CTB quadtree in the

texture, so that a given CU of the depth cannot be split more than its collocated CU in the texture. Moreover, when the

texture is split in 2NxN (or Nx2N), partitioning to 2NxN, Nx2N, or NxN is not performed for depth. The possible

partitioning is depicted in Figure 33.. Corresponding split flags and partition sizes for depth depending on the split flags

and partition sizes of texture are summarized in Table 2.

Figure 33: Texture partitions and corresponding possible depth partitions

Table 2: Split flags and partition sizes of depth depending on split flags and partition sizes of texture

Texture

SplitFlag

Texture

PartSize

Depth

SplitFlag

Depth

PartSize

Residual Depth

SplitFlag

Residual Depth

PartSize

1 - 1 - 1 -

1 - 0 0, 1, 2 or 3 0 0, 1, 2 or 3 resp.

0 0,1, 2 or 3 0 0 - -

- 0, 1 or 2 - 0 - -

- 3 - 0, 1, 2 or 3 - 0,1, 2 or 3 resp.

SplitFlag: 0 = no split, 1 = split; PartSize: 0 = 2Nx2N, 1 = Nx2N, 2 = 2NxN, 3 = NxN.

2.4 Encoder Control

For mode decision and motion estimation, a Lagrangian technique by which a cost measure is determined for

each candidate mode or parameter, and the mode or parameter with the smallest cost measure is selected. is the

distortion that is obtained by coding the considered block in a particular mode or with a particular parameter, is the

number of bits that are required for representing a block in a given mode or that are required for coding a given

parameter, and is the Lagrangian multiplier that is derived based on the used quantization parameter. As measure for

 3D-HEVC

36 3D-HEVC

the distortion, the sum of squared differences (SSD) or the sum of absolute differences (SAD) between the original and

the reconstructed sample values is used (for the coding of depth maps this measure was modified as described below).

For the coding of depth maps, basically the same decision process is used. However, the distortion measure has been

replaced with a measure that considers the distortion in synthesized intermediate views. This technique is described in

the following subsection.

2.4.1 View Synthesis Optimization

The geometry information given by depth data is exploited only indirectly in the rendering process. Hence, the lossy

coding of depth data causes distortions in the synthesized intermediate views. The depth map itself is not visible for a

viewer. The efficiency of depth coding is improved by considering this property. As a consequence, the distortion

measure for the mode decision process for depth maps is modified in a way that a weighted average of the synthesized

view distortion and the depth map distortion. To obtain a measure of the synthesized view distortion, two different

metrics are applied in RDO.

The first metric, discussed in section 2.4.1.1, is the synthesized view distortion change (SVDC). The computation of the

SVDC requires the usage of rendering functionalities in the encoding process. Since computational complexity is a

critical factor in distortion calculation, a method, which is also referred to as renderer model, has been utilized that

allows minimal re-rendering of parts of the synthesized view that are affected by a depth distortion. For this, a special

renderer is included in the encoder, which supports the basic functionalities, shared by most rendering approaches, like

sub-pixel accurate warping, hole filling and view blending.

The second metric, presented in section 2.4.1.2, is a model based synthesized view distortion estimation without

rendering. Basic idea of this metric is to derive an estimate for the synthesized view distortion by weighting the depth

distortion with a factor derived from the absolute value of the derivation of texture view in horizontal direction.

The integration of both metric in the encoder control is presented in sections 2.4.1.4 and 2.4.1.5.

2.4.1.1 Synthesized View Distortion Change (SVDC)

2.4.1.1.1 Definition of the SVDC

Since the encoding algorithm operates block-based, the mapping of depth distortion to the synthesized view distortion

must be block-based as well. Moreover, the sum of partial distortions (of sub-blocks) must be equal to the overall

distortion of a block in order to enable an independent distortion calculation for all partitions of a subdivided block, as

hierarchical block structures are used in HEVC.

A relationship between a depth map and a synthesized texture
 is created by the used view synthesis approach.

However, disocclusions and occlusions prevent a bijective mapping of the distorted areas in depth maps to distorted

areas in the synthesized views. For example, areas in the synthesized view, which depend on depth data of a considered

block, can become visible due to the distortions in other depth blocks; or vice versa, the distortion of a depth block has

no effect on the synthesized view, since the block is occluded there. Hence, an exact mapping between the distortion of a

block of the depth data and an associated distortion in the synthesized view is not possible considering only the depth

data within a currently processed block.

For resolving this issue, the change of the overall distortion in a synthesized view depending on the change of the depth

data within a block is determined, while simultaneously also considering depth data outside the block . For this

purpose, the synthesized view distortion change (SVDC) is defined as distortion difference between two synthesized

textures
 and ,

 (1)

 denotes a reference texture rendered from original video and depth data. represents the set of all samples in the

synthesized view. To illustrate how the textures
 and

 are obtained, the SVDC definition from eq. (1) is also depicted

in Figure 34.
 denotes a texture rendered from a depth map consisting of encoded depth data in already encoded

blocks and original depth data in the other blocks. The current block , for which the distortion has to be computed,

contains original depth data as well. For the synthesis of the texture
 a depth map is used that differs from the depth

map in that it contains the distorted depth data also for the current block .

3D-HEVC

 3D-HEVC 37

Figure 34: Definition of the SVDC related to the distorted depth data of the block depicted by the hatched area

in the bottom branch; VS denotes the view synthesis step and SSD stands for sum of squared differences.

The SVDC definition above is motivated by three reasons. First, an exact distortion measure is provided, therefore the

overall distortion of the synthesized view and thereby disocclusions and occlusions are considered. Second, the measure

is related to a block and third partial distortions are additive. For the latter two reasons, the change of the synthesized

view distortion caused by a change of a depth block is employed instead of the total synthesized view distortion itself.

Figure 34 shows the SVDC definition for the extrapolation of virtual views from one input view only. However, the

encoder side view synthesis algorithm supports also the interpolation of the texture
 from a left and a right view.

Hence, rendering requires a left and a right depth map. To extend the SVDC computation to this two view case,

the original depth map of the second view can be used when encoding the first depth map. Subsequently the first already

encoded depth map can be utilized for the SVDC computation when encoding the second depth map.

2.4.1.1.2 Efficient Computation of the SVDC

A straightforward approach to compute the SVDC would be the direct implementation of eq. (1). However, this would

require the complete rendering of the synthesized textures
 and

 and a rendering of a whole view is computational

too complex to be feasible in a rate-distortion optimization process. To overcome this problem, a method which enables

a fast computation of the SVDC and is integrated in the encoder.

Renderer Model

The renderer model provides three basic functionalities to the encoder: Initialization, partial re-rendering, and SVDC

calculation.

 The initialization of the renderer model is carried out before the encoding of a depth map is started. In the

initialization process, the complete synthesized view is rendered using the original input depth maps and the

input textures. The input depth maps are stored as the renderer models depth states and and the

rendered view as the synthesized view state
 . Intermediate variables used in the rendering process are also

stored to enable a fast re-rendering.

 Partial re-rendering is carried out to update the renderer model when the encoding of a block is finished and

the final depth data for the block is known. For this purpose, the reconstructed depth data and the position of

block are signalled to the renderer model. The renderer model changes the block in the depth state or

 from original to coded data and re-renders only local parts of the synthesized view state
 and the

intermediate variables that are affected by the change of the depth data. Thus, the renderer model is transferred

to a state that is required to compute the SVDC for blocks of the depth data encoded subsequently.

 For the computation of the SVDC, the position and the depth data of a block to be tested are provided to the

renderer model. The renderer model then computes the SVDC as defined in eq. (1). Here, re-rendering followed

by the computation of the sum of squared distortions SSD is carried out. However, instead of considering all

positions again only positions affected by the depth change are considered. Note that the re-rendering

carried out here does not modify any state variables of the renderer model. Hence, the SVDC can be computed

for multiple depth candidates successively without the need to re-render with original data in block .

Re-Rendering and Error Calculation Algorithm

The main objective of the algorithm is a computational low complex distortion calculation or state transition, hence a low

complex re-rendering of the parts of the synthesized view that are affected by a depth change in one of the input depth

maps.

Conventional view synthesis consists of multiple steps such as warping of the input samples, interpolation at sub pixel

positions, blending with a second view obtained similarly, and hole filling. Typically these steps are executed as

 3D-HEVC

38 3D-HEVC

independent algorithms that are applied successively using the results of the previous step. To enable fast re-rendering of

only parts of the synthesized view, all steps are combined in single algorithm that can be applied pixel-wise to the input

depth map. This allows a region-wise processing of the depth map, and thus an update of related regions in the

synthesized view.

This process is illustrated in Figure 35 for an example for rendering from a left view to the right. Rendering is applied

row wise, hence all depicted signals represent one row of input, intermediate, or output data. The single signals are from

bottom to top: the left input texture , a shifting chart, the texture synthesized from left the texture synthesized

from right , the blended texture , and the reference texture . The arrows denote the relationship between the

single samples or sample positions of the signals. Dots shown in the shifting chart represent samples from the input view.

Their horizontal position is equal to their position in the synthesized view. The vertical position shows their disparities.

Since the depth is monotonically decreasing with increasing disparity, the top-most samples in the chart are the samples

closest to the camera. Hence, it can be seen from the shifting chart which samples are occluded in the synthesized view.

Figure 35: Example for the dependencies between input, intermediate and output signals of the rendering or error

calculation step.

While a conventional view synthesis approach would carry out the single steps depicted from bottom to top for all

samples in the intervals (a) to (g), the method supports an interval-wise processing. Hence, all steps are first conducted

for interval (a) before continuing with interval (b). Re-rendering and error calculation are carried out by iterating only

once over the input depth samples. If only the view synthesis distortion is calculated there is no need to store

intermediate results in the state of the renderer model.

The boundaries of an interval in the output view are defined by the warped positions and of two neighboring input

view samples at positions and . For warping, disparities are computed from the depth map as described in the

beginning of sec. 2. Subsequently to the calculation of the interval boundaries, processing continues with interpolation,

disocclusion handling, or occlusion handling:

 Interpolation is carried out in non-occluded ranges that are not disoccluded, as for example in the intervals (a,

c, d, g, h). The accuracy of the warping is higher than the accuracy given by the sampling rate of synthesized

view; hence an interpolation at the full sample position located between the interval boundaries and is

carried out. For this, samples from an up-sampled version of the input texture are mapped to the

interpolation positions in the synthesized view . The position in the up-sampled view is derived from

the distance of the interpolation position to the interval boundaries:

 (2)

3D-HEVC

 3D-HEVC 39

The up-sampled view is created in the initialization step by interpolating the input texture with quarter-

sample accuracy using the FIR-filters specified for motion-compensated interpolation in HEVC.

 Disocclusions: If the width of the warped interval – is greater than two times the width of the sampling

distance, as for example for interval (b), a disocclusion is assumed in the synthesized view. Instead of

interpolation, hole filling is carried. For this purpose, the samples in the interval are set equal to the value of the

sample belonging to the right interval boundary (which belongs to the background). If the leftmost full

sample position within the interval is close to the left interval border, it is assumed that it belongs to the

foreground and it is set equal to the value of the left interval boundary . Note, that the positions of

disoccluded and filled samples are stored as additional information in the a filling map .

 Occlusions: Whether an interval is entirely occluded in the synthesized view, as for example interval (f), is

determined by detecting if the interval boundaries are reversed (), hence no complex z-buffering is

required. To derive whether other samples left to interval (f) are occluded, the rendering process stores the

position of the foreground edge. This stored position is then be utilized when processing the next intervals, for

example interval (e), to determine which parts of theses intervals are occluded. If re-rendering does not start at

the right image border, the position of the last foreground edge is recovered by carrying out a search to the right

of the changed depth samples.

Sample values derived from interpolation or hole filling
 , are instantly combined with the texture sample values from

a second view
 synthesized the same way and stored as intermediate variable in the renderer model. The result is the

sample value that is used in the final synthesized view
 .

The rendering model supports two different configurations. In the first configuration, a rendering process is considered

that renders intermediate views using both surrounding actually coded views. The second configuration considers

rendering processes by which an intermediate view is rendered mainly from one coded view; the other coded view is

only used for rendering areas that are not present in the preferred coded view.

In the first configuration of the renderer model, the blending process is similar to that implemented in the VSRS

software. Note that, although not depicted in Figure 35, a depth map
 is rendered from , when rendering

 , using

full sample accuracy. This depth map is used in the blending step. The decision how blending is carried out depends on

the filling of
 or

 and the rendered depth maps
 and

 . While
 and

 have been obtained in the rendering

process carried out before,
 and

 are stored as intermediate variables in the renderer model. The rules for

determining the blended sample value from
 and

 are specified in the following:

 If the position (is disoccluded (as indicated by the filling map) in only one view, the sample value from the

other view is used.

 Otherwise, if the position (is disoccluded in both views, the backmost sample value is used.

 Otherwise, if the depth difference retrieved from
 and

 is greater than a threshold, the front

sample is used.

 Otherwise, a weighted average of
 and

 , with a higher weight for the view that is closer to the

virtual view position, is used.

For the second configuration of the renderer model, the intermediate view is mainly rendered from one view and only

holes are filled from the other view. If assuming that
 is the main view ,the rules to determine the sample value

 from
 and

 are specified in the following:

 If
 indicates that there is no disocclusion at

 , the sample value
 is used.

 Otherwise, if
 indicates that there is a disocclusion at

 , the sample value
 is used.

 Otherwise, the average of
 and

 is used.

If only partial re-rendering is carried out, the result
 and all intermediate results are stored after the combination step

and the processing of the interval is stopped. Otherwise, if the SVDC is determined, the distortion of the calculated value

 is computed by comparing it to the reference

 in the next step.

To obtain the synthesized view distortion change the single intervals are rendered from right to left and the related

distortions are summed up continuously. Moreover, and that is actually not depicted in Figure 35, the old per sample

distortions of samples in the changed intervals are subtracted.

The renderer model only re-renders those parts of the synthesized view that are affected by the considered depth change.

It has to be considered that in some cases not only the intervals related to the changed depth values must be re-rendered,

but also some neighbouring intervals. A reason is that neighbouring intervals that are occluded before a depth change can

become visible after the depth change. The algorithm detects such cases and continues rendering, until all change

 3D-HEVC

40 3D-HEVC

samples in the synthesized view are updated. The detection is carried out while warping by also considering the old

shifted sample positions as they had been prior to the depth change and storing the left-most old position.

Chroma channels of the synthesized view are rendered together with the luma channel and are stored in the same

resolution as luma. For this, up sampled versions of the chroma channels are created in the initialization step, which are

later used for interpolation as described above. The sampling rate is increased by a factor of eight in horizontal direction

and a factor of two in vertical direction using the interpolation FIR-filters that are specified for motion-compensated

prediction in HEVC. However, the total distortion is obtained by a weighted sum of luma SVDC and chroma SVDC with

a weight of 1 for luma and a weight of ¼ for each of the two chroma channels.

Early skip of SVDC computation

To increase the processing speed of the VSO algorithm the SVDC calculations is skipped for lines of a block for that the

distortion of the disparity vector is zero. This means that if distorted depth and original depth are mapped to the same

disparity vector for all pixels in a line of the depth block the SVDC calculation is not carried out and the distortion is

assumed to be zero. .

2.4.1.2 Model based synthesized view distortion estimation without rendering

The distortion of depth maps does not linearly affect the synthesis distortion, and the impact of depth map distortions

varies according to the corresponding texture information. For example, the same depth distortions on textured and

textureless regions lead to different synthesis distortions.

In a conventional video coding system, one commonly used distortion function is the sum of squared differences (SSD),

which is defined between original and encoded depth block as

 (3)

where and indicate the original and reconstructed depth map, respectively, and means the pixel

position in a (macro-) block B. However, the conventional metric is not an good estimate of the synthesized view

distortion. Instead, the following view synthesis distortion () metric provides an better estimate by that weighting the

depth distortion with the sum of absolute horizontal texture gradients:

 (4)

 indicates the reconstructed texture, and is proportional coefficient determined by

 (5)

with denoting the focal length, denoting the baseline between the current and the rendered view, and

representing the values of the nearest and farthest depth of the scene, respectively.

2.4.1.3 Depth fidelity term

When encoding using the synthesized view distortion change or estimate only, the depth fidelity is strongly distorted. In

order to preserve the depth fidelity the distortion measure used in RDO is computed by an weighted average of the

synthesized view distortion or the estimated synthesized view distortion and the depth distortion. The distortion used

in RDO for depth maps is given by

 (6)

with denoting the synthesized view distortion change or estimate, denoting the distortion of the depth map

itself (i.e. SAD or SSD), and and denoting the weights for the two distortion terms.

2.4.1.4 Integration of distortion metrics in the Encoder Control

To enable rate-distortion optimization using the SVDC, the described renderer model is integrated in the encoding

process for depth data. For this, the conventional distortion computation is replaced with computation of the weighted

average of depth distortion and SVDC in distortion computation steps related to the mode decision, coding unit (CU)

partitioning, motion parameter inheritance and merging. Note that for updating the renderer model used for the SVDC

calculation re-rendering is carried out when a final decision on the coding mode is taken by the encoder control.

In order to reduce the computational complexity the weighted average of SVDC and depth distortion in not used for all

encoding decisions. A weighted average of VSD and depth distortion is used for intra-mode pre-selection and residual

3D-HEVC

 3D-HEVC 41

quadtree partitioning. For motion estimation and rate-distortion optimized quantization the conventional SSD of depth

data is used.

2.4.1.5 Adaptation of the Lagrange Multiplier

The usage of the synthesized view distortion in the rate-distortion decisions requires the adaptation of the Lagrange

multiplier to obtain optimized coding results. This adaptation is carried out by adjusting the Lagrange multiplier using

an additional scaling factor depending on the QP of the coded video. The factor enables an adjustment of video/depth

rate allocation. As alternative a constant factor can be used.

The computation of rate-distortion cost has been modified to

 (7)

with denoting the weighted average of depth and synthesized view distortion, denoting a scaling factor, and

denoting the rate for the current coding mode.

2.4.2 Zero residual coding for depth intra CUs

In the rate distortion optimized coding of inter blocks a decision between coding with and without residual is carried out.

For depth coding this principle is extended to intra coded blocks that are not part of slices using intra prediction only.

Therefore, the residual is set to zero by the encoder. No additional signalling is used.

2.4.3 Optional Encoder Control using a depth quadtree limitation

In the encoding process a given CTB is split into smaller CUs, based on RD optimized decisions. A corresponding

quadtree (QT) is obtained for the texture, and another one for the depth. This tool prevents the encoder from making full

investigation of every possible QT configuration for the depth.

The tool forces the encoder to limit the partitioning of the depth at the same level as the partitioning of the texture. For a

given CTU, the quadtree of the depth is linked to the collocated CTB quadtree in the texture, so that a given CU of the

depth cannot be split more than its collocated CU in the texture.

This encoder restriction results in encoder runtime saving for the depth.

Figure 36: Example of a CTB QT partitioning for the texture (left), allowed collocated depth CTB QT

partitioning (centre), and disallowed collocated depth CTB QT partitioning (right).

Figure 36 illustrates this principle. On the left a CTB QT partitioning for the texture is represented. In the centre, the

collocated CTB in the depth is represented. This QT partitioning is allowed because it is, CB by CB, coarser than the

corresponding texture CB. On the right, another example of possible collocated CTB in the depth is represented. This QT

partitioning is disallowed because one CB is more partitioned than the texture (red lines).

2.4.4 Optional Encoder Control for Renderable Regions in Dependent Views [Not in CTC]

As an optional encoding technique, a mechanism is integrated by which regions in dependent views that can be rendered

based on the transmitted independent view and the associated depth maps are identified. These regions are encoded by

employing a modified cost measure, which mainly considers the required bit rates. After decoding, the renderable

regions can be identified in the same way as in the encoder and replaced by rendered versions.

 3D-HEVC

42 3D-HEVC

Figure 37: Rendering from a left camera position to a right camera position using depth maps.

The encoder identifies regions in the current frame that can be rendered from frames of the same time instance in a

reference view based on the reconstructed depth maps of the reference view (see Figure 37). During the encoding

process, the encoder checks for every CU, if all samples within that CU can be rendered. If all samples can be rendered,

no residual is transmitted for this CU. In our HEVC-based codec, this means that for inter prediction the

no_residual_data_flag for the CU is set equal to 1 or for intra-prediction the coded block flag of the TUs within the CU

is set equal to 0. It should be noted that no syntax change is applied; only the encoder decision is modified.

Due to the quadtree structure in HEVC, the rate-distortion (RD-)costs are compared between different granularities of

possible block subdivisions for the R-D optimization. Rendering artefacts have a different impact on the subjective

image/video quality perception than coding artefacts and cannot be compared using conventional measurements, such as

MSE or PSNR. Samples in renderable regions are not taken into account for calculating the distortion term in the R-D

optimized encoder decisions. In Figure 38, the right image shows a block subdivision that is one level deeper than the

ones in the left image. The grey area labels the samples that can be rendered and that are therefore not considered in the

calculation of the distortion. Thus, for example, the upper left block in the right image is not considered at all. Hence, the

costs being compared are (left block subdivision) against (right

block subdivision), where the distortions are only calculated based on the white shaded samples. E.g., the distortion of

block is . By this modification, blocks for which a subblock can be rendered are not automatically split, but

also the entire block may be coded using a conventional coding mode if this improves the overall coding efficiency.

Figure 38: Distortion calculation on different tree depths. Renderable samples (gray shaded) are not taken into

account.

For renderable blocks, the Lagrange multiplier is scaled by a factor and the calculation of the R-D costs is

changed from to .

3D-HEVC

 3D-HEVC 43

2.4.5 Depth edge-based r-d optimization tuning [Not in SW]

As alternative or in addition to the r-d optimization for depth maps as described in sec. 2.4.1, the following r-d

optimization for depth coding is included. The purpose of this additional rd-opt is to reduce edge ringing artefacts in

depth maps.

Normally cost is calculated as SAD between original and distorted (reconstructed) samples:

Where is distortion, is original distortion cost, is modified distortion cost for depth, and is a horizontal

filter {1,-1} that detects vertical edges.

3. View Synthesis Algorithms

In the following, two view synthesis algorithms are described. Sec. 3.1 describes the fast 1-dimensional view synthesis

algorithm that is part of the HEVC-based 3DV software. It is also referred to as "VSRS 1D fast mode". In sec. 3.2, an

alternative view synthesis algorithm is described. This algorithm is also referred to as "VSRS" and was developed during

the 3DV exploration experiments.

3.1 Fast 1-D View Synthesis (VSRS 1D Fast Mode)

An overview of the view synthesis method is depicted in Figure 39. The method supports the interpolation of a

synthesized view form a left and right texture with corresponding depth maps and . For this, two texture

 and

 are extrapolated from the left and the right view at the position of the virtual view. Subsequently, the

similarity of
 and

 is enhanced before combining them to synthesized output view
 . The single processing steps

are discussed in the following. Without the loss of generality steps carried out independently for both, the left and the

right view, are discussed for the left view only.

 3D-HEVC

44 3D-HEVC

Figure 39: Processing steps of the view synthesis approach.

Similarly as the renderer model used in the encoder control (cp. sec. 2.4.1), the view synthesis algorithm supports two

configurations. In the first configuration, which is referred to as interpolative rendering, an intermediate view is

synthesized using both surrounding coded views. In the second configuration, which is referred to as non-interpolative

rendering, an intermediate view is rendered mainly from one coded view; the other coded view is only used for rendering

areas that are not present in the preferred coded view.

3.1.1 Upsampling of input video pictures

The luma channel of input texture is upsampled by a factor of four in horizontal direction. Chroma channels are

upsampled by a factor of eight in horizontal direction and two in vertical direction. For upsampling, the FIR filters

specified in HEVC for the purpose of motion-compensated interpolation are used. The resulting upsampled texture is

denoted as .

3.1.2 Warping, interpolation and hole filling

Warping, interpolation and hole filling are carried out in a combined step. For warping disparities are computed as

described in the beginning of sec. 2. Warping, interpolation and hole filling is carried out line wise and within a line

interval wise. Processing direction is from left to right. An interval in the output view is defined by the warped positions

 and of two neighboring input view samples at positions and . Subsequently to the calculation of the interval

boundaries, processing continues depending on the width of the interval.

 Interpolation is applied if the width of the warped interval – is less than or equal to two times the

sampling distance. An interpolation at the full sample position located between the interval boundaries

 and is carried out. For this, samples from the up-sampled version of the input texture are mapped to

the interpolation positions in the synthesized view . The position in the up-sampled view is derived

from the distance of the interpolation position to the interval boundaries:

 (8)

 Disocclusions: If the width of the warped interval – is greater than two times the width of the sampling

distance a disocclusion is assumed in the synthesized view. Instead of interpolation hole filling is carried. For

this purpose samples in the interval are set to the value of sample belonging to the right interval boundary

 (which belongs to the background). If the leftmost full sample position within the interval is close to the

3D-HEVC

 3D-HEVC 45

left interval border it is assumed that it belongs to the foreground and it is set to the value of the left interval

boundary . Disoccluded and filled sample position are stored in the filling map .

 Occlusions: If the boundaries of an interval are reversed () the interval is occluded in the synthesized

view. Rendering at a full sample position close to
 might be carried out, if the next interval is not occluded

and
 belongs to a foreground object. Moreover, the algorithm uses the property that occluded background

intervals are automatically overwritten by foreground objects in the synthesized view , due to the processing

direction from left to right.

Chroma channels of the synthesized view are rendered together with luma channel and stored in the same resolution as

luma. Moreover, if interpolative rendering is used, also a depth map
 is extrapolated with full sample accuracy from

the input depth map within the steps described above.

3.1.3 Reliability map creation

In this step the filling map
 is converted to the reliability map

 . If interpolative rendering is used, positions marked

as disocclusions in
 are mapped to a reliability of 0. In areas located right to a disocclusion with a width of six

samples the reliability is linearly increased from 0 to 255 from left to right in horizontal direction. All other samples are

assigned with a reliability of 255. If non-interpolative rendering is used, positions marked as disocclusions in
 are

mapped to a reliability of 0. All other samples are assigned with a reliability of 255.

3.1.4 Similarity enhancement

In this step the histogram of is adapted to the histogram of . For this purpose a look up table (LUT) realizing a

function is created, that is subsequently applied to map the samples of to adapt their values.

The function and the corresponding LUT are obtained by approximately solving

 (9)

where denotes the histogram only regarding samples at positions with reliabilities
 and

 of

255. Chroma channels are treated in the same way.

3.1.5 Combination

 and are combined to obtain the synthesized output view in this step.

In the interpolative rendering mode is used, the decision how blending is carried out depends on the reliability maps

 or

 and the rendered depth maps
 and

 . The rules for determining the blended sample value from

 and

 are given in the following:

 If position (is disoccluded (reliability of 0) in only one view, the sample value from the other view is used.

 Otherwise, if position (is disoccluded in both views, the backmost sample value is used.

 Otherwise, if the depth difference retrieved form
 and

 is above a threshold, the front sample

is used.

 Otherwise, if one sample is not reliable with a value of 255, a weighted average with the given reliabilities as

weights is used.

 Otherwise, a weighted average of
 and

 with a higher weight for the view that is closer to the

virtual view position is used.

If the non-interpolative rendering mode is used, the intermediate view is mainly rendered from one view are utilized and

only holes are filled from the other view. Assuming
 is the main view,the rules for determining the sample value

 from
 and

 are given in the following:

 If
 is equal to 255 or

 is equal 0, the sample value
 is used.

 Otherwise, if
 is equal to 0, the sample value

 is used.

 Otherwise, a weighted average with the given reliabilities as weights is used.

3.1.6 Chroma decimation

To convert the 4:4:4 YUV representation obtained by rendering to the required 4:2:0 output, chroma channels are

decimated by a factor of two in horizontal and vertical direction using the FIR filter (1;2;1).

 3D-HEVC

46 3D-HEVC

3.2 VSRS (alternative view synthesis algorithm) [Not in CTC]

The VSRS algorithm was developed during the MPEG 3DV Exploration Experiments. VSRS takes two reference views

and two depth maps as input to generate a synthesized virtual view. The intrinsic and extrinsic camera parameters are

required and 1D parallel and non-parallel camera setups are supported.

The software has two main modes referred to as “General mode” and “1D mode”. The reference views are reprojected to

the target viewpoint using pixel-by-pixel mapping based on 3D warping in “General mode”, or horizontal pixel shifting

in “1D mode”.

3.2.1 General mode

In the general mode, virtual views are generated by a technique referred to as “3D warping”. This process involves two

steps. At first the original view (reference view) is projected into 3D world space using the corresponding reference

depth map. Then the 3D space points are projected into the image plane of the “virtual” view. For this, the intrinsic

camera parameters A, and extrinsic camera parameters E=[R|t] are required. The intrinsic matrix A, transforms the 3D

camera coordinates to its 2D image coordinates. The extrinsic matrix E=[R|t] transforms the world coordinates to camera

coordinates, which is composed of rotation matrix R and translation vector t. The two-step warping can be formulated in

two equations as in eq. (10) and (12). First a pixel (ur, vr) in the reference view is warped to the world coordinates (Xw,

Yw, Zw), using the depth of the reference view:

 rr

r

rrr

w

w

w

tv

u

AzR

Z

Y

X

,13

1

,33

1

,33

1
 (10)

where subscript r indicates the reference view and zr is the depth value in the reference view at location (ur, vr) calculated

from

farfarnear

111

255

1

ZZZ

v
z

 (11)

where v is an 8-bit intensity of the depth map value. It is noted that the values z, Znear, and Zfar are assumed to be either

all positive or all negative values.

Then the 3D point is mapped to the virtual view:

 v

w

w

w

vvv

v

v t

Z

Y

X

RAv

u

z ,13,33,33

1
 (12)

where subscript v refers to the virtual view.

The general mode is based on a "reverse warping" algorithm. Instead of forward warping the left and right reference

views to the virtual location, the left and right depth maps are warped to the virtual view location. Then after filtering,

these depth maps are used to warp the reference views to the virtual view. This results in a higher rendering quality of the

final synthesized view. Figure 40 depicts the flow diagram of the general mode.

3D-HEVC

 3D-HEVC 47

Figure 40: Flow diagram for VSRS general mode.

The steps of VSRS general mode are briefly described below:

 First, the two depth maps are mapped to the target viewpoint. E.g. the left reference depth is warped to the

virtual view location using eq. (10) and (12). If multiple pixels warp to the same location in the virtual view,

then the pixel closest to the camera wins, so foreground pixels will occlude background pixels. The right depth

map is also warped in a similar way. We denote these warped depth maps as DL’ and DR’, respectively.

 The mapped depth maps DL’ and DR’ may contain small holes. Small holes which are caused by rounding to

integer coordinates are filled by a series of median filtering. Furthermore, binary masks for each side are

maintained to indicate larger holes, for example caused by occlusions that remain after filtering. During the

following steps, these binary masks are used and updated if necessary (for example during hole filling in

step).

 Next, the left and right texture reference views are mapped to the target viewpoint using the filtered depth map

DL’ and DR’. So two texture images at the target viewpoint are obtained, one generated from the left reference

view and the other from the right reference view. We denote them here as VL’ and VR’, respectively. Note that

DL’ is used to warp the left reference, and DR’ is used to warp the right reference.

 Hole areas in the mapped texture images VL’ and VR’, which are caused by occlusion, are filled by pixels from

the other mapped texture image. So holes in VL’ are filled from non-hole areas in VR’ and vice versa.

 Next, these two virtual images are blended. The general mode has two modes of blending: Blending-on and

Blending-off. The Blending-on mode is a weighted blending based on the baseline distance. So pixels from the

reference camera which is closer to the virtual view are assigned a higher weight, based on the baseline ratio. In

Blending-off mode, all pixels visible in the closer reference view are copied to the virtual view, and only hole

areas are filled from the farther reference view. During this step, the binary masks are merged to form one mask

indicating remaining holes which are inpainted in the next step.

 Any remaining holes after blending are filled by an inpainting algorithm using the binary mask. Inpainting

algorithms can be used to reconstruct damaged portions of images. Generally a mask is used to indicate which

image regions need to be inpainted. Next, colour information is propagated inward from the region boundaries,

i.e., the known image information is used to fill in the missing areas. An inpainting example is show in Figure

41.

Additionally, VSRS contains a Boundary Noise Removal algorithm. In this mode, the binary maps indicating holes

caused by occlusion, are used to identify object boundaries. After identifying the background side of the holes based on

the depth, the holes are expanded into the background. Then these areas in VL’ and VR’ are filled from the opposite

 3D-HEVC

48 3D-HEVC

reference view. This reduces noise around object boundaries, where foreground pixels are falsely projected into

background objects due to depth errors.

Figure 41: Inpainting: “damaged” image, mask, and result after inpainting.

3.2.2 1-d mode

VSRS provides a second synthesis mode other than the general "3D warping" as described above: 1D mode. This mode

is implemented with assumptions that the optical axes of camera are in parallel and the views are rectified such that no

vertical disparities exist. Under the assumption of 1D mode, formulations can be simpler than in the general case:

 The rotation matrix for every camera is identical to each other.

 The translation vectors of all cameras share the same translation in Y and Z directions, that is, Ty and Tz are

constant for every view.

 As a consequence rv zz

 Views are corrected (distortion and vertical disparity are null), so vertical position of intersection of optical axis

in sensors is constant

So the 33A matrix has the following form

100

0

0

33 dvfv

dufu

A , where
fu

 and
fv

 denote the horizontal and

vertical focal length in pixels; du and dv the position of intersection with the optical axis in image (dv is constant

among cameras).

Then eq. (12) given for the general case can be simplified as,

rv

r

rXvX

rv dudu
z

ttfu
uu

)(,,

and rv vv (13)

The equation above is used to “warp” pixels from real views to the virtual one.

Figure 42 depicts the flow diagram of the VSRS 1D-mode.

3D-HEVC

 3D-HEVC 49

Figure 42: Flow diagram for VSRS 1D mode.

The algorithm proceeds as follows:

 In a preliminary phase,

o The chroma components are upsampled to 4:4:4 format (for implementation simplicity).

o For suppressing transient depth errors, the depth maps can be temporally filtered according to the

variations of the colour information if the TemporalImprovementOption is chosen.

o The colour video may be further upsampled, if sub-pixel precision is specified in the configuration file,

for example, half-pixel or quarter-pixel.

 During the warping process, the reference views and the depth maps are mapped to the target viewpoint using

eq. (13), which is a 1D shifting on the samples. For each reference view, a binary mask is maintained indicating

whether a pixel in the targeted map is filled or not (hole pixel). The warping procedure is also controlled by the

splatting switch in configuration file. When splatting is selected, each pixel in the reference view may be

mapped to two sample locations. Besides, two enhancement processing on warping (corresponding to

CleanNoiseOption and WarpEnhancementOption) suppress some synthesis artefacts due to the texture-depth

misalignment at object boundaries (which causes foreground pixels scattered to the background) and wrongly

categorized holes in the foreground (which makes background pixels appear in the foreground). Warping of the

unreliable pixels (which probably yield artefacts) is forbidden accordingly.

 Two warped images from left and right reference views are obtained from last step, which are then merged to a

single image. This operation is also applied on warped depth maps and filling masks. In case of conflicts (two

pixels present for the same target position), the MergingOption specified by the user is applied in the following

way.

o Z-buffer only: Take the pixel closest to camera always.

o Averaging only: Mix colours using weights in reverse proportional to the distance of the virtual camera

from the left and right reference views

o Adaptive merging: Use either the proximity criterion () if depth level difference is greater than a

threshold or, () if depth levels are too similar, uses the weighting method.

 3D-HEVC

50 3D-HEVC

 Hole areas in the warped images are filled by propagating the background pixels into the hole along the

horizontal row.

 Final view image is downsampled to original size if necessary and transformed to 4:2:0 format for output

purposes.

Additionally, VSRS 1D mode can use the boundary noise removal algorithm already described as final processing step in

the section dedicated to the general mode.

3D-HEVC

 3D-HEVC 51

4. Software

4.1 Software repository

The source code for the software will be available in the MPEG SVN repository. An initial version of the software is

available in the following SVN repository.

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/

For tool integration a branch for a company can be obtained by contacting:

gerhard.tech@hhi.fraunhofer.de,

kwegner@multimedia.edu.pl

4.2 Build System

The software can be built under linux using make. For Windows, solutions for different versions of Microsoft Visual

Studio are provided.

4.3 Software Structure

The 3D-HEVC Test Model Software includes several applications and libraries for encoding, decoding and view

synthesis:

 Applications:

o TAppEncoder, executable for bit stream generation

o TAppDecoder, executable for reconstruction.

o TAppRenderer, executable view synthesis

o TAppExtractor, executable for bitstream extraction

 Libraries:

o TAppCommon, library for handling encoder, decoder and renderer options and camera parameters

o TLibEncoder, encoding functionalities

o TLibDecoder, decoding functionalities

o TLibRenderer, renderer functionalities

o TLibExtractor, bitstream extraction functionalities

o TLibCommon, common functionalities

o TLibVideoIO, video input/output functionalities

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/
mailto:gerhard.tech@hhi.fraunhofer.de
mailto:kwegner@multimedia.edu.pl

