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Abstract: In this paper, the authors describe a fast view inpainting algorithm dedicated to practical, real-time immersive 

video systems. Inpainting is an inherent step of the entire virtual view rendering process, allowing for 

achieving high Quality of Experience (QoE) for a user of the immersive video system. The authors propose a 

novel approach for inpainting, based on dividing the inpainting process into two independent, highly 

parallelizable stages: view analysis and hole filling. In total, four methods of view analysis and two methods 

of hole filling were developed, implemented, and evaluated, both in terms of computational time and quality 

of the virtual view. The proposed technique was compared against an efficient state-of-the-art iterative 

inpainting technique. The results show that the proposal allows for achieving good objective and subjective 

quality, requiring less than 2 ms for inpainting of a frame of the typical FullHD multiview sequence. 

1 INTRODUCTION 

There is currently a growing interest in immersive 

video and virtual reality systems, where users can 

virtually immerse themselves in the scene (Vadakital, 

2022), (Wien, 2019), (Boyce, 2021). These systems 

have evolved from previous free-viewpoint television 

and free navigation systems (Tanimoto, 2012), 

allowing users to navigate around a scene 

(Stankiewicz, 2018) (Fig. 1). 

 In immersive video systems, a scene is 

captured by a set of precisely calibrated cameras 

(Tao, 2021). The number of cameras used can vary, 

ranging from less than ten (Mieloch2, 2020) to even 

hundreds (Fujii, 2006). However, in order to provide 

smooth virtual navigation, users should not be limited 

to explicitly captured camera videos (blue cameras in 

Fig. 1). They should have the ability to choose their 

preferred viewport (orange camera in Fig. 1), which 

needs to be rendered using data from the input 

cameras (Fachada, 2018), (Dziembowski, 2019). This 

rendering process requires creating a 3D model of the 

scene and calculating the precise position of each 

captured object. Usually, the 3D scene is represented 

as MVD (Müller, 2011) (multiview video plus depth). 

In the MVD representation, each input view is 

accompanied by the corresponding depth map (either 
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captured by time-of-flight cameras (Xiang, 2013) or 

estimated based on the input views (Mieloch, 2020)). 

 
Figure 1: Idea of an immersive video system; blue: input 

views, orange: virtual view. 
 

In the MVD representation, the typical rendering 

(also called the virtual view synthesis) process 

comprises four main steps: 

1. depth reprojection (creation of the depth map 

corresponding to the virtual view), 

2. texture reprojection (creation of the virtual view), 

3. inpainting (filling of areas, which were not 

reprojected from input views), 

4. optional virtual view postprocessing (e.g., 

additional filtration (Dziembowski, 2016) or color 

correction (Dziembowski, 2018)). 

In order to provide a high quality of experience for 

the viewer, the entire rendering has to be performed 

in real-time. Therefore, all the steps have to be as fast 

as possible. In this paper, we focus on the efficient 

method of inpainting, which can be used in the 

practical immersive video system. 



In general, image inpainting is a well-known 

and widely described topic, initially developed for 

such applications as image restoration or watermark 

removal (Bertalmio, 2000), (Levin, 2003), (Criminisi, 

2004), (Barnes, 2009). The general idea of inpainting 

is the same independently on the application – filling 

of selected parts of an image (“holes”, Fig. 2) using 

information from its remaining area (e.g., the 

neighborhood of the holes). Therefore, even the 

simplest methods developed for other applications 

can be used for inpainting the virtual views in the 

immersive video system (Tezuka, 2015). Such an 

approach, however, does not take advantage of 

additional information available in the immersive 

video system – the depth maps (Fig. 3). 
 

  
Figure 2: Idea of an image inpainting. Both images contain 

a fragment of a synthesized virtual view. Left – a direct 

result of a view reprojection. Right – virtual view inpainted 

in order to conceal the presence of missing pixels. 
 
 

The main reason, which introduces holes in the virtual 

view are occlusions. When changing the watching 

perspective, some parts of the scene – occluded in the 

input views – should become visible in the virtual 

view. These areas (called “disocclusions”) cannot be 

synthesized since they are not available in any input 

views. Disocclusions need to be inpainted using 

information from the background (Fig. 4), not the 

foreground objects (which occluded these parts of the 

background in the input views) (Oh, 2009), (Zinger, 

2010). There are numerous depth-based inpainting 

methods described in the literature. These methods 

may follow various principles, e.g., simple extensions 

of typical inpainting methods (Daribo, 2010), 

(Buyssens, 2017), (Cho, 2017), background warping 

(Wang, 2011), (Khatiullin, 2018), usage of 

optimization techniques (Mao, 2014), background 

calculation (Yao, 2014), (Luo, 2017), or temporal 

consistency preservation (Liu, 2012), (Lai, 2017). 

 There are numerous depth-based inpainting 

methods described in the literature. These methods 

may follow various principles, e.g., simple extensions 

of typical inpainting methods (Daribo, 2010), 

(Buyssens, 2017), (Cho, 2017), background warping 

(Wang, 2011), (Khatiullin, 2018), usage of 

optimization techniques (Mao, 2014), background 

calculation (Yao, 2014), (Luo, 2017), or temporal 

consistency preservation (Liu, 2012), (Lai, 2017). As 

stated by the authors of all the abovementioned 

papers, each of these methods can be used for 

efficient inpainting of holes in the virtual view in 

terms of perceived quality. 
 

  
Figure 3: Virtual view and corresponding depth map. 
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Figure 4: Basic vs. depth-based inpainting; A: reference 

view, B: reprojected view, C and D: B with holes filled with 

(D) and without (C) depth-based inpainting. 
 

However, the practical, immersive video system 

has an additional requirement, which has to be 

fulfilled – the entire view rendering pipeline at the 

user’s end has to be performed in real-time. 

Therefore, a practical inpainting method must not 

only provide decent quality but also be as fast as 

possible. The proposed inpainting algorithm satisfies 

both requirements, providing decent quality inpainted 

regions while minimizing computational time. 

2 REAL-TIME RENDERING 

There are several real-time rendering methods, which 

could be used in an immersive video system. Most of 

them require dedicated hardware, such as powerful 

graphic cards (Nonaka, 2018), FPGA devices (Li, 

2019), or even VLSI devices (Huang, 2019), which 

makes them less practical and versatile than CPU-

based techniques (Stankowski, 2023). The CPU-

based rendering can be successfully used even in low-

cost, practical immersive video systems where a user 

accesses the immersive content via a simple personal 

computer or even a laptop (Dziembowski2, 2018). 

3 PROPOSAL 

The proposed solution is a non-iterative inpainting 

algorithm based on two ideas. The first one is to 

perform inpainting based on the nearest valid pixel(s) 

available in the same row or column as the processed 

one. The second idea is to divide inpainting into two 

separate (and parallelizable) stages: analysis and 

processing. 



 Image analysis, the first stage of the proposed 

algorithm, is designed to find missing pixels (holes) 

that have to be inpainted and to determine the position 

of valid pixels that can be used as a source during the 

processing stage. In order to keep the computational 

complexity reasonably low, up to four sources are 

searched. As presented in Fig. 5, the first set of valid 

pixels is determined by scanning within the same row 

(nearest available pixels to the left and right), while 

the second set is determined by scanning within the 

same column (nearest available pixels above and 

below). The position of found inpainting sources is 

then stored in buffers for further processing. 
 

      
Figure 5: Illustration showing the exemplary location of 

valid pixels used as a source for inpainting a missing pixel 

found within the same row/column. 
 

The second stage of the proposed algorithm is the 

actual filling of missing pixels. In this stage, valid 

source coordinates stored in intermediate buffers are 

used and the depth-based inpainting is performed. In 

total, two approaches to depth-based inpainting were 

proposed and investigated. The simpler one selects 

the source with the farthest depth (considered as 

related to the background) and will be referred to as 

“selection inpainting” method. The more 

sophisticated method finds the farthest depth and 

finds all source pixels within the allowed depth range 

around the farthest one. The found sources are then 

adaptively merged by calculating a weighted average, 

while the weight depends on the depth difference and 

the distance between pixels. This approach will be 

called “merging inpainting”. 

 When compared to the iterative approach 

(Bertalmio, 2000), the non-iterative inpainting has 

several advantages. The processing is done in a single 

pass, which allows for achieving predictable 

computing time. Additionally, the non-iterative 

inpainting reduces memory bandwidth by avoiding 

repetitive scanning of the entire image buffer. 

Moreover, the separation into stages allows for the 

division of the computation into several independent 

tasks and consequently for effective parallelization. 

4 IMPLEMENTATION 

In order to evaluate the proposed algorithm, the 

authors prepared several implementations. The 

inpainting analysis was implemented in four different 

manners: naïve, corners originating, rows-columns, 

and tile-based. 

 The naïve analysis is the conceptually simplest 

one. For every missing pixel, a full scan in each 

direction is performed. The pixels within a row or a 

column are browsed (starting from the closest one) 

until a valid one is found (or an image edge is 

encountered). The processing of each pixel is 

independent of each other, and the search operation 

can be easily divided into many threads. 

 The remaining approaches (corners 

originating, rows-columns, and tile-based) do not 

require exhaustive search but instead introduce data 

dependency between neighboring pixels. One can 

notice that in a consistent group of missing pixels 

within a single row (see Fig 5), all of them will have 

the same coordinates for left and right valid pixels. 

Therefore, there is no need to repeatedly scan the 

same area and the valid pixel coordinated from 

neighboring missing pixels can be reused. 

 In corners originating implementation, the 

analysis is performed in two passes. The left-top pass 

detects left and above valid pixels, and the bottom-

right pass detects right and below valid pixels. This 

approach has low computational and memory 

complexity, but due to data dependency, the 

possibility of parallelization is limited to two threads 

(the first thread for the left-top pass and the second 

thread for the bottom-right pass). 

 The rows-columns implementation defines 

four separate passes dedicated for searching left, 

right, above, and below valid pixels. This means that 

the image has to be scanned four times but – on the 

other hand – it is more prospective for parallelization. 

For example, for left or right valid pixel search, the 

data dependency occurs only within an image row. 

This leads us to the conclusion that each row could be 

analyzed separately. In the case of analyzing the 

vertical direction, the dependency occurs only within 

an image column – allowing for processing each 

column independently. 

 The tile-based variant aims for the reduction 

of required memory bandwidth and compute burden 

while preserving the parallelization ability. This 

approach introduces an additional pre-analysis pass 

intended to detect areas of the image that contain 

holes (missing pixels). These areas are grouped into 

square tiles with a size equal to 64×64 (the optimal 

size was determined experimentally), and tiles 

containing any holes are marked as “inpainting 

required”. Subsequently, tiles marked as required for 

further processing are analyzed using the 

abovementioned rows-columns method. This 

approach allows for reducing the impact of multiple 



analysis passes introduced by the original rows-

columns method. Inpainting processing 

implementation is quite straightforward since there 

are no data dependencies at this stage. 

 All listed analysis and processing methods 

were implemented in two variants: single-threaded 

and multithreaded. In the case of the parallel, 

multithreaded variant, authors spent a lot of effort in 

preparing a flexible implementation that scales up to 

dozens of threads and exploits the possibilities of 

modern multicore CPUs. 

 In order to perform a fair comparison to the 

state-of-the-art iterative approach (Bertalmio, 2000), 

authors prepared an efficient and simplified 

implementation of this algorithm (both single and 

multithreaded) and included it in the performance 

evaluation. 

5 EXPERIMENTS 

5.1 Methodology 

The experiments were performed on a test set 

containing 9 miscellaneous test sequences, 

commonly used in immersive video applications, e.g., 

within ISO/IEC JTC1/SC29/WG04 MPEG Video 

Coding group (ISO, 2023) (Table 1, Fig. 6). The 

proposal was compared with a fast implementation of 

the state-of-the-art iterative inpainting method 

(referred as “I”) – the depth-based extension of 

(Bertalmio, 2000). Both inpainting algorithms were 

implemented within the real-time CPU-based virtual 

view synthesizer, described by the authors of this 

manuscript in (Stankowski, 2023). 

Table 1: Test sequences. 

Sequence 
Resolution 

Type ID Name 

ERP 

A01 ClassroomVideo1 4096×2048 

C01 Hijack2 4096×2048 

C02 Cyberpunk3 2048×2048 

Perspective 

(CG) 

J01 Kitchen4 1920×1080 

J04 Fan5 1920×1080 

W02 Dancing4 1920×1080 

Perspective 

(natural) 

D01 Painter6 2048×1088 

L01 Fencing7 1920×1080 

L03 MartialArts8 1920×1080 
1(Kroon, 2018), 2(Doré, 2018), 3(Jeong, 2021), 4(Boissonade, 

2018), 5(Doré, 2020), 6(Doyen, 2018), 7(Domański, 2016), 
8(Mieloch, 2023) 
 

The efficiency of the proposed view synthesizer 

(including proposed inpainting) was compared with 

the state-of-the-art view rendering technique – 

ISO/IEC MPEG’s reference software, RVS (Fachada, 

2018), (ISO, 2018). The computational time was 

evaluated on a modern x86-64, 12-core CPU: AMD 

Ryzen 9 5900X. The processing time was measured 

using precision time stamps according to (Microsoft, 

2020). The quality of rendered virtual views was 

assessed using two commonly used full-reference 

objective quality metrics: IV-PSNR (Dziembowski, 

2022) and WS-PSNR (Sun, 2017). 

   

   

   
Figure 6: Test sequences; first row (from left): A01, C01, 

C02; second row: J01, J04, W02; third row: D01, L01, L03. 

5.2 Computational time evaluation 

The computational complexity of the proposed 

algorithm was evaluated by performing virtual view 

synthesis and measuring processing time. Table 2 and 

Table 3 contain detailed analysis of each 

implementation gathered for Painter (FullHD, 

perspective) and ClassroomVideo (4K, ERP) 

sequences. Separate processing times (Microsoft, 

2020) are shown for each analysis and filling 

algorithm. Moreover, the implementation of state-of-

the-art iterative inpainting was included as a 

reference. 

 Two variants of synthesis conditions were 

evaluated in order to evaluate algorithms in different 

conditions: 

1. with two source views – leading to a small number 

of missing pixels in the virtual view, 

2. with only one source view – leading to a vast 

number of missing pixels. 

Table 2: Computational time analysis for D01 sequence. 
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Single-threaded processing time [ms] 

2 3479 40.94 1.34 3.93 4.68 2.24 1.09 1.19 

1 120019 525.16 158.45 4.24 5.00 5.23 2.10 3.31 

Multi-threaded processing time [ms] 

2 3479 24.01 1.69 2.33 2.24 0.87 0.25 0.26 

1 120019 237.57 178.06 3.02 2.33 1.82 0.38 0.52 
 

In the case of the analysis stage, the naïve approach is 

reasonably fast only if the number of missing pixels 



is low. However, it can be very slow for a higher 

number of missing pixels and does not scale with the 

number of threads (due to memory bandwidth 

starvation). Corners originating and rows-columns 

approaches offer more consistent and predictable 

results and noticeable speedup for parallel execution. 

The tile-based approach is the fastest for all 

multithreaded tests and offers competitive 

performance for the single-threaded variant. 

When inpainting processing is considered, the 

“merging” approach (referred to as “M”) is slower 

than the simpler “selection” method (referred to as 

“S”), but the difference can be treated as negligible. 

Table 3: Computational time analysis for A01 sequence. 
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Single-threaded processing time [ms] 

2 134887 308.84 11.86 15.31 18.72 11.98 7.16 7.41 

1 522251 881.23 47.85 16.21 20.36 20.17 11.14 15.71 

Multi-threaded processing time [ms] 

2 134887 160.75 17.13 9.75 13.96 5.10 2.49 3.40 

1 522251 433.29 58.60 9.75 14.07 9.92 3.53 5.27 

Table 4: Inpainting computational time for all sequences. 

Seq 
Empty 
pixels 
(avg)   

Inpainting time 

[ms] 

Inpainting time per 

pixel [ns] 

I S M I S M 

A01 134904 166.3 8.99 9.31 1232.7 66.66 69.01 

C01 225629 491.6 8.88 8.25 2178.9 39.34 36.56 

C02 892321 1749.9 6.21 7.49 1961.1 6.96 8.40 

D01 2448 22.9 1.02 0.96 9338.9 416.26 390.37 

J01 36968 47.4 1.34 1.52 1281.8 36.27 41.00 

J04 44346 60.2 2.07 1.83 1357.7 46.75 41.28 

L01 114944 142.1 1.66 1.31 1236.2 14.41 11.40 

L03 176439 223.6 2.00 3.09 1267.2 11.36 17.48 

W02 38010 36.4 2.03 2.85 957.3 53.36 75.07 

Avg. ERP 802.6 8.03 8.35 1790.9 37.65 37.99 

Avg. Perspective 88.8 1.69 1.93 2573.2 96.40 96.10 

All 326.7 3.80 4.07 2312.4 76.82 76.73 

In Table 4 the summary for all test sequences was 

presented. In this case, the fastest possible analysis 

algorithm (tile-based) was used, and combined times 

for analysis and processing were presented. All 

results were gathered using multithreaded processing, 

as the authors consider this scenario more relevant. In 

general, the proposed algorithm is ~80 times faster 

than the reference, iterative approach. 

5.3 Quality evaluation 

In the quality evaluation, a virtual view was 

synthesized using two real views. Results of the 

objective quality evaluation are presented in Tables 5 

and 6, separately for each test sequence. As presented, 

both proposed fast inpainting methods allow for 

achieving similar quality as a more sophisticated and 

complicated iterative approach, both in terms of WS-

PSNR and IV-PSNR. 

Table 5: Quality of rendered virtual views: WS-PSNR. 

Seq 
WS-PSNR [dB] 

ΔWS-PSNR [dB] 

(compared to I) 

I S M S M 

A01 31.74 31.61 31.74 – 0.13 – 0.00 

C01 37.65 37.81 37.92    0.16    0.27 

C02 23.73 22.67 23.66 – 1.07 – 0.07 

D01 37.64 37.62 37.62 – 0.01 – 0.01 

J01 29.41 29.18 29.48 – 0.23    0.07 

J04 28.12 27.90 28.16 – 0.21    0.05 

L01 28.86 28.80 28.80 – 0.06 – 0.06 

L03 26.69 26.26 26.54 – 0.43 – 0.15 

W02 29.08 28.74 28.94 – 0.34 – 0.13 

Average 30.32 30.07 30.32 – 0.26 – 0.00 

Table 6: Quality of rendered virtual views: IV-PSNR. 

Seq 
IV-PSNR [dB] 

ΔIV-PSNR [dB] 

(compared to I) 

I S M S M 

A01 46.14 46.10 46.24 – 0.04    0.10 

C01 47.44 47.66 47.64    0.21    0.20 

C02 32.90 31.94 33.13 – 0.96    0.23 

D01 47.52 47.47 47.44 – 0.05 – 0.07 

J01 38.13 37.82 38.12 – 0.30 – 0.01 

J04 37.20 37.05 37.33 – 0.15    0.12 

L01 41.89 41.59 41.59 – 0.30 – 0.30 

L03 32.23 31.77 32.09 – 0.46 – 0.14 

W02 42.63 41.84 42.16 – 0.79 – 0.46 

Average 40.67 40.36 40.64 – 0.31 – 0.04 

Subjectively, rendered virtual views are similar 

although the characteristics of the artifacts differ 

between various methods (Fig. 7). In the iterative 

approach, disocclusions are blurred, what is plausible 

in smooth areas, but distractive in areas containing 

edges (e.g., a building corner in Cyberpunk 

sequence). Both fast inpainting methods preserve 

edges much better due to horizontal and vertical 

image analysis performed before the inpainting. It is 

worth noting that the quality achieved by the 

proposed algorithm is similar to the reference 

iterative approach, however, the computation time is 

about 100 times shorter (~4ms for proposed vs 326 

for iterative). 

5.4 Comparison against widely used 
general inpainting algorithms  

The comparison of the proposed approach against 

state-of-the-art inpainting techniques was particularly 



challenging. There are several algorithms designed 

for the inpainting of synthesized views (Daribo, 

2010), (Buyssens, 2017), (Cho, 2017), however 

software with their implementations is not available. 

Therefore, for this comparison, we decided to choose 

two inpainting algorithms based on availability 

(widespread software libraries) and a decent quality 

of implementation. The first is an inpainting 

algorithm based on the biharmonic equation 

(Damelin, 2018) (“[Dam]”) with an implementation 

available in a widely recognized “scikit-image” 

image processing library. The second candidate is an 

algorithm based on the fast marching method (Telea, 

2004) (“[Tel]”) with an implementation available in 

the widely used OpenCV library. 

 In the case of the C02 sequence, the algorithm 

(Damelin, 2018) was excluded due to excessive 

computation time exceeding 10 minutes per frame 

thus making it useless for real-time purposes. The 

detailed result of computational time analysis is 

presented in Table 7. On average, the investigated 

algorithm is about three orders of magnitude slower 

than the proposed one (they process frame in several 

seconds in contrast to several milliseconds for the 

proposed one). 

Table 7: Inpainting computational time for all sequences. 

Seq 
Empty pixels 

(average) 

Inpainting time per frame [ms] 

M [Dam] [Tel] 

A01 134904 9.31 2406 27877 

C01 225629 8.25 13489 7791 

C02 892321 7.49 > 10 min 27723 

D01 2448 0.96 320 104 

J01 36968 1.52 511 465 

J04 44346 1.83 1483 2093 

L01 114944 1.31 15111 228 

L03 176439 3.08 16624 1810 

W02 38010 2.85 583 8156 

Average (excl. C02) 4.07 6316 8472 

Table 8: Quality of rendered virtual views: WS-PSNR. 

Seq 
WS-PSNR [dB] 

ΔWS-PSNR [dB] 

(compared to I) 

M [Dam] [Tel] [Dam] [Tel] 

A01 31.74 30.95 31.18    0.79 0.56 

C01 37.92 35.92 35.84    2.00 2.08 

C02 23.66 --- 21.56 --- 2.10 

D01 37.62 37.46 37.35    0.16 0.27 

J01 29.48 28.32 29.01    1.16 0.47 

J04 28.16 25.3 25.76    2.86 2.40 

L01 28.8 28.48 28.66    0.32 0.14 

L03 26.54 26.61 26.11 – 0.07 0.43 

W02 28.94 28.43 28.41    0.51 0.53 

Avg excl. C02 31.15 30.18 30.29    0.97 0.86 

The results of inpainting quality evaluation in terms 

of WS-PSNR and IV-PSNR were presented in Table 

8 and Table 9. In 95% of test cases, the proposed 

algorithm offered better quality of inpainted pictures 

when compared to (Damelin, 2018) and (Telea, 

2004). On average, the objective quality achieved by 

the proposed algorithm was ~0.9 dB better in terms of 

WS-PSNR and ~1.05 dB better in terms of IV-PSNR. 

Table 9: Quality of rendered virtual views: IV-PSNR. 

Seq 
IV-PSNR [dB] 

ΔIV-PSNR [dB] 

(compared to I) 

M [Dam] [Tel] [Dam] [Tel] 

A01 46.24 45.55 46.35 0.69 – 0.11 

C01 47.64 45.63 45.31 2.01    2.33 

C02 33.13 --- 30.29 ---    2.84 

D01 47.44 47.05 46.83 0.39    0.61 

J01 38.12 37.38 37.19 0.74    0.93 

J04 37.33 34.95 34.68 2.38    2.65 

L01 41.59 39.85 40.94 1.74    0.65 

L03 32.09 32.04 31.26 0.05    0.83 

W02 42.16 41.74 41.59 0.42    0.57 

Avg excl. C02 41.58 40.52 40.52 1.05 1.06 

5.5 Real-time view rendering vs. state-
of-the-art view rendering 

In the last experiment, the entire view rendering 

algorithm (Stankowski, 2023), which includes the 

proposed inpainting technique was compared to the 

state-of-the-art view synthesis software – RVS (ISO, 

2018). The results – both computational time and 

objective quality – are reported in Table 10. 

Table 10: The real-time view synthesizer (Stankowski, 

2023) with proposed fast inpainting vs. state-of-the-art RVS 

(ISO, 2018). 
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A01 15885 39.7 31.90 31.73 – 0.17 45.04 46.24    1.20 

C01 15547 36.9 37.55 37.92    0.37 46.93 47.64    0.71 

C02   7878 19.0 22.63 23.66    1.03 31.45 33.13    1.68 

D01   3838   8.8 38.51 37.62 – 0.89 48.08 47.44 – 0.64 

J01   3370   7.7 28.83 29.48    0.65 37.02 38.12    1.10 

J04   3723   7.8 27.14 28.16    1.02 36.68 37.33    0.65 

L01   3355   8.4 29.70 28.80 – 0.90 40.77 41.59    0.82 

L03   3285   8.1 26.90 26.54 – 0.36 32.31 32.09 – 0.22 

W02   3437   8.2 29.40 28.94 – 0.46 41.60 42.16    0.56 

Avg  30.28 30.32    0.03 39.99 40.64    0.65 

In terms of subjective quality, the real-time view 

synthesizer slightly outperforms the RVS, especially 

in disoccluded regions, where RVS tries to preserve 

continuity between reprojected pixels (using triangle-

based reprojection (Fachada, 2018)) while all tested 

inpainting methods do not introduce distractive 

artifacts (Fig. 7). 



6 CONCLUSIONS 

In the paper, we have presented an efficient inpainting 

method, which can be used in the virtual view 

rendering in a practical, real-time immersive video 

system. The proposal allows for achieving a high 

Quality of Experience for an immersive video system 

user while requiring extremely short computational 

time. The proposed approach is based on splitting the 

inpainting process into two highly parallelizable 

stages: view analysis and hole filling. 

The experimental results show that in a typical 

case, where a FullHD virtual view is rendered using 

two input views, the proposed inpainting requires less 

than 2 ms per frame (result averaged over 6 test 

sequences). Moreover, the objective and subjective 

quality of rendered views is similar to using more 

sophisticated and time-consuming inpainting 

methods. 

 The proposal was implemented within a real-

time CPU-based virtual view synthesizer 

(Stankowski, 2023) developed by the authors of this 

manuscript, showing that it is possible to obtain vastly 

fast rendering, allowing the development of a 

practical, consumer immersive video system. 

ACKNOWLEDGEMENTS 

This work was supported by the Ministry of 
Education and Science of the Republic of Poland. 

REFERENCES 

Barnes, C., et al. (2009). “Patch-Match: a randomized 
correspondence algorithm for structural image 
editing,” ACM Tr. on Graphics, vol. 28, no. 3. 

Bertalmio, M., et al. (2000). “Image inpainting,” 
SIGGRAPH 2000, New Orlean, USA. 

Boissonade, P., Jung, J. (2018). “Proposition of new 
sequences for Windowed-6DoF experiments on 
compression, synthesis, and depth estimation,” Doc. 
ISO/IEC JTC1/SC29/WG11 MPEG/M43318. 

Boyce, J., et al. (2021). “MPEG Immersive Video Coding 
Standard,” Proc. IEEE 119 (9), pp. 1521-1536. 

Buyssens, P., et al. (2017). “Depth-guided disocclusion 
inpainting of synthesized RGB-D images,” IEEE Tr. 
on Image Proc., vol. 26, no. 2, pp. 525-538. 

Cho, J.H., et al. (2017). “Hole filling method for depth 
image based rendering based on boundary decision,” 
IEEE Signal Proc. Letters 24 (3), pp. 329-333. 

Criminisi, A., et al. (2004). “Region filling and object 
removal by exemplar-based image inpainting,” IEEE 
Tr. on Image Proc. 13 (9), pp. 1200-1212. 

Damelin, S.B., Hoang, N. (2018). “On Surface Completion 
and Image Inpainting by Biharmonic Functions: 

Numerical Aspects,” Int. Journal of Mathematics and 
Mathematical Sciences, 2018 (3950312). 

Daribo, I., et al. (2010). “Depth-aided image inpainting for 
novel view synthesis,” MMSP, Saint-Malo, France. 

Domański, M. et al. (2016). “Multiview test video 
sequences for free navigation exploration obtained 
using pairs of cameras,” Doc. ISO/IEC 
JTC1/SC29/WG11, MPEG M38247. 

Doré, R. (2018). “Technicolor 3DoF+ test materials,” 
ISO/IEC JTC1/SC29/WG11 MPEG, M42349, San 
Diego, CA, USA. 

Doré, R., et al. (2020). “InterdigitalFan0 content proposal 
for MIV,” Doc. ISO/IEC JTC1/SC29/ WG04 MPEG 
VC/ M54732, Online. 

Doyen, D., et al. (2018). “[MPEG-I Visual] New Version 
of the Pseudo-Rectified Technicolor painter Content,” 
Doc. ISO/IEC JTC1/SC29/WG11 MPEG/M43366. 

Dziembowski, A., et al. (2016). “Multiview Synthesis – 
improved view synthesis for virtual navigation,” PCS 
2016, Nuremberg, Germany. 

Dziembowski, A., Domański, M. (2018). “Adaptive color 
correction in virtual view synthesis,” 3DTV Conf. 
2018, Stockohlm – Helsinki. 

Dziembowski, A., Stankowski, J. (2018). “Real-time CPU-
based virtual view synthesis,” 2018 ICSES Conf., 
Kraków, Poland. 

Dziembowski, A., et al. (2019). “Virtual view synthesis for 
3DoF+ video,” PCS 2019, Ningbo, China. 

Dziembowski, A., et al. (2022). “IV-PSNR—The Objective 
Quality Metric for Immersive Video Applications,” 
IEEE T. Circ. & Syst. V. Tech. 32 (11). 

Fachada, S., et al. (2018). “Depth image based view 
synthesis with multiple reference views for virtual 
reality,” 3DTV-Conf, Helsinki, Finland. 

Fujii, T., et al. (2006). “Multipoint measuring system for 
video and sound – 100-camera and microphone 
system,” IEEE Int. Conf. on Mult. and Expo. 

Huang, H., et al. (2019). “System and VLSI implementation 
of phase-based view synthesis,” 2019 ICASSP 
Conference, Brighton, UK. 

ISO. (2018). “Reference View Synthesizer (RVS) manual,” 
Doc. ISO/IEC JTC1/SC29/WG11 MPEG, N18068. 

ISO. (2023). “Common test conditions for MPEG 
immersive video,” ISO/IEC JTC1/SC29/WG04 
MPEG VC, N0332, Antalya, Turkey. 

Jeong, J.Y., et al. (2021). “[MIV] ERP Content Proposal for 
MIV ver.1 Verification Test,” ISO/IEC JTC1/ 
SC29/WG04 MPEG VC, M58433, Online. 

Khatiullin, A., et al. (2018). “Fast occlusion filling method 
for multiview video generation,” 3DTV Conf. 2018, 
Stockholm, Sweden. 

Kroon, B. (2018). “3DoF+ test sequence ClassroomVideo,” 
ISO/IEC JTC1/SC29/WG11 MPEG, M42415, San 
Diego, CA, USA. 

Lai, Y., et al. (2017). “Three-dimensional video inpainting 
using gradient fusion and clustering,” ICNC-FSKD 
Conf. 2017, Guilin, China. 

Levin, A., et al. (2003). “Learning how to inpaint from 
global image statistics,” 9th Int. Conf. on Computer 
Vision, Nice, France. 

Li, Y., et al. (2019). “A real-time high-quality complete 
system for depth image-based rendering on FPGA,” 
IEEE T. Circ&Sys. for V. Tech. 29(4), pp. 1179-1193. 



 Liu, H., et al. (2012). “Global-background based view 
synthesis approach for multi-view video,” 3DTV 
Conf. 2012, Zurich, Switzerland. 

Luo,  G., Zhu, Y. (2017). “Foreground removal approach 
for hole filling in 3D video and FVV synthesis,” IEEE 
Tr. Circ. & Syst. Vid. Tech. 27 (10), pp. 2118-2131. 

Mao, Y., et al. (2014). “Image interpolation for DIBR view 
synthesis using graph Fourier transform,” 3DTV Conf. 
2014, Budapest, Hungary. 

Microsoft Developer Network Library. (2020). Acquiring 
high-resolution time stamps. https://msdn.microsoft. 
com/enus/library/windows/desktop/dn553408. 

Mieloch, D., et al. (2020). “Depth Map Estimation for Free-
Viewpoint Television and Virtual Navigation,” IEEE 
Access, vol. 8, pp. 5760-5776. 

Mieloch, D., et al. (2020). “[MPEG-I Visual] Natural 
Outdoor Test Sequences,” Doc. ISO/IEC JTC1/ 
SC29/WG11 MPEG/M51598, Brussels. 

Mieloch, D., et al. (2023). “[MIV] New natural content – 
MartialArts,” ISO/IEC JTC1/SC29/WG04 MPEG 
VC, M61949, Online. 

Müller, K., et al. (2011). “3-D Video Representation Using 
Depth Maps,” Proc. IEEE 99 (4), pp. 643-656. 

Nonaka, K., et al. (2018). “Fast plane-based free-viewpoint 
synthesis for real-time live streaming,” 2018 VCIP 
Conf., Taichung, Taiwan, pp. 1-4. 

Oh, K.J., et al. (2009). “Hole filling method using depth 
based inpainting for view synthesis in free viewpoint 
television and 3-D video,” PCS 2009, Chicago. 

Stankiewicz, O., et al. (2018). “A free-viewpoint television 
system for horizontal virtual navigation,” IEEE Tr. on 
Multimedia 20 (8), pp. 2182-2195. 

Stankowski, J., Dziembowski, A. (2023). “Massively 
parallel CPU-based virtual view synthesis with atomic 
z-test,” WSCG 2023 Conf., Pilsen, Czechia. 

Sun, Y., et al. (2017). “Weighted-to-Spherically-Uniform 
Quality Evaluation for Omnidirectional Video,” IEEE 
Signal Processing Letters 24.9(2017):1408-1412. 

Tanimoto, M., et al. (2012). “FTV for 3-D Spatial 
Communication,” Proc. IEEE 100, pp. 905-917. 

Tao, L., et al. (2021). “A Convenient and High-Accuracy 
Multicamera Calibration Method Based on Imperfect 
Spherical Objects,” IEEE Tr. Instr. & Meas. 70. 

Telea, A. (2004). “An image inpainting technique based on 
the fast marching method,” Journal of Graphics Tools 
9 (1), pp. 23-34. 

Tezuka, T., et al. (2015). “View synthesis using superpixel 
based inpainting capable of occlusion handling and 
hole filling,” PCS 2015, Cairns, Australia. 

Vadakital, V.K.M., et al. (2022). “The MPEG Immersive 
Video Standard—Current Status and Future Outlook,” 
IEEE MultiMedia 29 (3), pp. 101-111. 

Wang, O., et al. (2011). “StereoBrush: interactive 2D to 3D 
conversion using discontinuous warps,” 8th 
Eurographics Symposium on Sketch-Based Interfaces 
and Modelling, Vancouver, Canada. 

Wien, M., et al. (2019). “Standardization status of 
immersive video coding,” IEEE J. Emerg. and Sel. 
Top. in Circ. and Syst. 9 (9). 

Xiang, S., et al. (2013). ”A gradient-based approach for 
interference cancelation in systems with multiple 
Kinect cameras,” in Proc. IEEE Int. Symp. Circuits 
Syst. (ISCAS), Beijing, China, pp. 13–16. 

Yao, C., et al. (2014). “Depth map driven hole filling 
algorithm exploiting temporal correlation 
information,” IEEE Tr. on Broadcasting, vol. 60, no. 
2, pp. 510-522. 

Zinger, S., et al. (2010). “Free-viewpoint depth image based 
rendering,” J. of Visual Communication and Image 
Representation 21 (5-6), pp. 533-541. 

 

 

RVS (ISO, 2018) Iterative inpainting (I) Selection inpainting (S) Merging inpainting (M) 

    

    

    

Figure 7: Fragments of views rendered using real-time synthesizer (Stankowski, 2023) with different inpainters (columns 

2 – 4), compared to views rendered using state-of-the-art view synthesizer – RVS (ISO, 2018). Sequences (from top): 

C02, J01, W02. 


