
Fast and Reliable Inpainting for Real-Time

Immersive Video Rendering

Jakub Stankowski1 a, Adrian Dziembowski1 b
1Institute of Multimedia Telecommunications, Poznan University of Technology, Poznań, Poland

{jakub.stankowski, adrian.dziembowski}@put.poznan.pl

Keywords: Immersive Video, Inpainting, Virtual View Synthesis, Real-Time Video Processing.

Abstract: In this paper, the authors describe a fast view inpainting algorithm dedicated to practical, real-time immersive

video systems. Inpainting is an inherent step of the entire virtual view rendering process, allowing for

achieving high Quality of Experience (QoE) for a user of the immersive video system. The authors propose a

novel approach for inpainting, based on dividing the inpainting process into two independent, highly

parallelizable stages: view analysis and hole filling. In total, four methods of view analysis and two methods

of hole filling were developed, implemented, and evaluated, both in terms of computational time and quality

of the virtual view. The proposed technique was compared against an efficient state-of-the-art iterative

inpainting technique. The results show that the proposal allows for achieving good objective and subjective

quality, requiring less than 2 ms for inpainting of a frame of the typical FullHD multiview sequence.

1 INTRODUCTION

There is currently a growing interest in immersive

video and virtual reality systems, where users can

virtually immerse themselves in the scene (Vadakital,

2022), (Wien, 2019), (Boyce, 2021). These systems

have evolved from previous free-viewpoint television

and free navigation systems (Tanimoto, 2012),

allowing users to navigate around a scene

(Stankiewicz, 2018) (Fig. 1).

 In immersive video systems, a scene is

captured by a set of precisely calibrated cameras

(Tao, 2021). The number of cameras used can vary,

ranging from less than ten (Mieloch2, 2020) to even

hundreds (Fujii, 2006). However, in order to provide

smooth virtual navigation, users should not be limited

to explicitly captured camera videos (blue cameras in

Fig. 1). They should have the ability to choose their

preferred viewport (orange camera in Fig. 1), which

needs to be rendered using data from the input

cameras (Fachada, 2018), (Dziembowski, 2019). This

rendering process requires creating a 3D model of the

scene and calculating the precise position of each

captured object. Usually, the 3D scene is represented

as MVD (Müller, 2011) (multiview video plus depth).

In the MVD representation, each input view is

accompanied by the corresponding depth map (either

a https://orcid.org/0000-0002-5105-5090
b https://orcid.org/0000-0001-7426-3362

captured by time-of-flight cameras (Xiang, 2013) or

estimated based on the input views (Mieloch, 2020)).

Figure 1: Idea of an immersive video system; blue: input

views, orange: virtual view.

In the MVD representation, the typical rendering

(also called the virtual view synthesis) process

comprises four main steps:

1. depth reprojection (creation of the depth map

corresponding to the virtual view),

2. texture reprojection (creation of the virtual view),

3. inpainting (filling of areas, which were not

reprojected from input views),

4. optional virtual view postprocessing (e.g.,

additional filtration (Dziembowski, 2016) or color

correction (Dziembowski, 2018)).

In order to provide a high quality of experience for

the viewer, the entire rendering has to be performed

in real-time. Therefore, all the steps have to be as fast

as possible. In this paper, we focus on the efficient

method of inpainting, which can be used in the

practical immersive video system.

In general, image inpainting is a well-known

and widely described topic, initially developed for

such applications as image restoration or watermark

removal (Bertalmio, 2000), (Levin, 2003), (Criminisi,

2004), (Barnes, 2009). The general idea of inpainting

is the same independently on the application – filling

of selected parts of an image (“holes”, Fig. 2) using

information from its remaining area (e.g., the

neighborhood of the holes). Therefore, even the

simplest methods developed for other applications

can be used for inpainting the virtual views in the

immersive video system (Tezuka, 2015). Such an

approach, however, does not take advantage of

additional information available in the immersive

video system – the depth maps (Fig. 3).

Figure 2: Idea of an image inpainting. Both images contain

a fragment of a synthesized virtual view. Left – a direct

result of a view reprojection. Right – virtual view inpainted

in order to conceal the presence of missing pixels.

The main reason, which introduces holes in the virtual

view are occlusions. When changing the watching

perspective, some parts of the scene – occluded in the

input views – should become visible in the virtual

view. These areas (called “disocclusions”) cannot be

synthesized since they are not available in any input

views. Disocclusions need to be inpainted using

information from the background (Fig. 4), not the

foreground objects (which occluded these parts of the

background in the input views) (Oh, 2009), (Zinger,

2010). There are numerous depth-based inpainting

methods described in the literature. These methods

may follow various principles, e.g., simple extensions

of typical inpainting methods (Daribo, 2010),

(Buyssens, 2017), (Cho, 2017), background warping

(Wang, 2011), (Khatiullin, 2018), usage of

optimization techniques (Mao, 2014), background

calculation (Yao, 2014), (Luo, 2017), or temporal

consistency preservation (Liu, 2012), (Lai, 2017).

 There are numerous depth-based inpainting

methods described in the literature. These methods

may follow various principles, e.g., simple extensions

of typical inpainting methods (Daribo, 2010),

(Buyssens, 2017), (Cho, 2017), background warping

(Wang, 2011), (Khatiullin, 2018), usage of

optimization techniques (Mao, 2014), background

calculation (Yao, 2014), (Luo, 2017), or temporal

consistency preservation (Liu, 2012), (Lai, 2017). As

stated by the authors of all the abovementioned

papers, each of these methods can be used for

efficient inpainting of holes in the virtual view in

terms of perceived quality.

Figure 3: Virtual view and corresponding depth map.

A

B

C

D

Figure 4: Basic vs. depth-based inpainting; A: reference

view, B: reprojected view, C and D: B with holes filled with

(D) and without (C) depth-based inpainting.

However, the practical, immersive video system

has an additional requirement, which has to be

fulfilled – the entire view rendering pipeline at the

user’s end has to be performed in real-time.

Therefore, a practical inpainting method must not

only provide decent quality but also be as fast as

possible. The proposed inpainting algorithm satisfies

both requirements, providing decent quality inpainted

regions while minimizing computational time.

2 REAL-TIME RENDERING

There are several real-time rendering methods, which

could be used in an immersive video system. Most of

them require dedicated hardware, such as powerful

graphic cards (Nonaka, 2018), FPGA devices (Li,

2019), or even VLSI devices (Huang, 2019), which

makes them less practical and versatile than CPU-

based techniques (Stankowski, 2023). The CPU-

based rendering can be successfully used even in low-

cost, practical immersive video systems where a user

accesses the immersive content via a simple personal

computer or even a laptop (Dziembowski2, 2018).

3 PROPOSAL

The proposed solution is a non-iterative inpainting

algorithm based on two ideas. The first one is to

perform inpainting based on the nearest valid pixel(s)

available in the same row or column as the processed

one. The second idea is to divide inpainting into two

separate (and parallelizable) stages: analysis and

processing.

 Image analysis, the first stage of the proposed

algorithm, is designed to find missing pixels (holes)

that have to be inpainted and to determine the position

of valid pixels that can be used as a source during the

processing stage. In order to keep the computational

complexity reasonably low, up to four sources are

searched. As presented in Fig. 5, the first set of valid

pixels is determined by scanning within the same row

(nearest available pixels to the left and right), while

the second set is determined by scanning within the

same column (nearest available pixels above and

below). The position of found inpainting sources is

then stored in buffers for further processing.

Figure 5: Illustration showing the exemplary location of

valid pixels used as a source for inpainting a missing pixel

found within the same row/column.

The second stage of the proposed algorithm is the

actual filling of missing pixels. In this stage, valid

source coordinates stored in intermediate buffers are

used and the depth-based inpainting is performed. In

total, two approaches to depth-based inpainting were

proposed and investigated. The simpler one selects

the source with the farthest depth (considered as

related to the background) and will be referred to as

“selection inpainting” method. The more

sophisticated method finds the farthest depth and

finds all source pixels within the allowed depth range

around the farthest one. The found sources are then

adaptively merged by calculating a weighted average,

while the weight depends on the depth difference and

the distance between pixels. This approach will be

called “merging inpainting”.

 When compared to the iterative approach

(Bertalmio, 2000), the non-iterative inpainting has

several advantages. The processing is done in a single

pass, which allows for achieving predictable

computing time. Additionally, the non-iterative

inpainting reduces memory bandwidth by avoiding

repetitive scanning of the entire image buffer.

Moreover, the separation into stages allows for the

division of the computation into several independent

tasks and consequently for effective parallelization.

4 IMPLEMENTATION

In order to evaluate the proposed algorithm, the

authors prepared several implementations. The

inpainting analysis was implemented in four different

manners: naïve, corners originating, rows-columns,

and tile-based.

 The naïve analysis is the conceptually simplest

one. For every missing pixel, a full scan in each

direction is performed. The pixels within a row or a

column are browsed (starting from the closest one)

until a valid one is found (or an image edge is

encountered). The processing of each pixel is

independent of each other, and the search operation

can be easily divided into many threads.

 The remaining approaches (corners

originating, rows-columns, and tile-based) do not

require exhaustive search but instead introduce data

dependency between neighboring pixels. One can

notice that in a consistent group of missing pixels

within a single row (see Fig 5), all of them will have

the same coordinates for left and right valid pixels.

Therefore, there is no need to repeatedly scan the

same area and the valid pixel coordinated from

neighboring missing pixels can be reused.

 In corners originating implementation, the

analysis is performed in two passes. The left-top pass

detects left and above valid pixels, and the bottom-

right pass detects right and below valid pixels. This

approach has low computational and memory

complexity, but due to data dependency, the

possibility of parallelization is limited to two threads

(the first thread for the left-top pass and the second

thread for the bottom-right pass).

 The rows-columns implementation defines

four separate passes dedicated for searching left,

right, above, and below valid pixels. This means that

the image has to be scanned four times but – on the

other hand – it is more prospective for parallelization.

For example, for left or right valid pixel search, the

data dependency occurs only within an image row.

This leads us to the conclusion that each row could be

analyzed separately. In the case of analyzing the

vertical direction, the dependency occurs only within

an image column – allowing for processing each

column independently.

 The tile-based variant aims for the reduction

of required memory bandwidth and compute burden

while preserving the parallelization ability. This

approach introduces an additional pre-analysis pass

intended to detect areas of the image that contain

holes (missing pixels). These areas are grouped into

square tiles with a size equal to 64×64 (the optimal

size was determined experimentally), and tiles

containing any holes are marked as “inpainting

required”. Subsequently, tiles marked as required for

further processing are analyzed using the

abovementioned rows-columns method. This

approach allows for reducing the impact of multiple

analysis passes introduced by the original rows-

columns method. Inpainting processing

implementation is quite straightforward since there

are no data dependencies at this stage.

 All listed analysis and processing methods

were implemented in two variants: single-threaded

and multithreaded. In the case of the parallel,

multithreaded variant, authors spent a lot of effort in

preparing a flexible implementation that scales up to

dozens of threads and exploits the possibilities of

modern multicore CPUs.

 In order to perform a fair comparison to the

state-of-the-art iterative approach (Bertalmio, 2000),

authors prepared an efficient and simplified

implementation of this algorithm (both single and

multithreaded) and included it in the performance

evaluation.

5 EXPERIMENTS

5.1 Methodology

The experiments were performed on a test set

containing 9 miscellaneous test sequences,

commonly used in immersive video applications, e.g.,

within ISO/IEC JTC1/SC29/WG04 MPEG Video

Coding group (ISO, 2023) (Table 1, Fig. 6). The

proposal was compared with a fast implementation of

the state-of-the-art iterative inpainting method

(referred as “I”) – the depth-based extension of

(Bertalmio, 2000). Both inpainting algorithms were

implemented within the real-time CPU-based virtual

view synthesizer, described by the authors of this

manuscript in (Stankowski, 2023).

Table 1: Test sequences.

Sequence
Resolution

Type ID Name

ERP

A01 ClassroomVideo1 4096×2048

C01 Hijack2 4096×2048

C02 Cyberpunk3 2048×2048

Perspective

(CG)

J01 Kitchen4 1920×1080

J04 Fan5 1920×1080

W02 Dancing4 1920×1080

Perspective

(natural)

D01 Painter6 2048×1088

L01 Fencing7 1920×1080

L03 MartialArts8 1920×1080
1(Kroon, 2018), 2(Doré, 2018), 3(Jeong, 2021), 4(Boissonade,

2018), 5(Doré, 2020), 6(Doyen, 2018), 7(Domański, 2016),
8(Mieloch, 2023)

The efficiency of the proposed view synthesizer

(including proposed inpainting) was compared with

the state-of-the-art view rendering technique –

ISO/IEC MPEG’s reference software, RVS (Fachada,

2018), (ISO, 2018). The computational time was

evaluated on a modern x86-64, 12-core CPU: AMD

Ryzen 9 5900X. The processing time was measured

using precision time stamps according to (Microsoft,

2020). The quality of rendered virtual views was

assessed using two commonly used full-reference

objective quality metrics: IV-PSNR (Dziembowski,

2022) and WS-PSNR (Sun, 2017).

Figure 6: Test sequences; first row (from left): A01, C01,

C02; second row: J01, J04, W02; third row: D01, L01, L03.

5.2 Computational time evaluation

The computational complexity of the proposed

algorithm was evaluated by performing virtual view

synthesis and measuring processing time. Table 2 and

Table 3 contain detailed analysis of each

implementation gathered for Painter (FullHD,

perspective) and ClassroomVideo (4K, ERP)

sequences. Separate processing times (Microsoft,

2020) are shown for each analysis and filling

algorithm. Moreover, the implementation of state-of-

the-art iterative inpainting was included as a

reference.

 Two variants of synthesis conditions were

evaluated in order to evaluate algorithms in different

conditions:

1. with two source views – leading to a small number

of missing pixels in the virtual view,

2. with only one source view – leading to a vast

number of missing pixels.

Table 2: Computational time analysis for D01 sequence.

S
o

u
rc

e
v
ie

w
s

E
m

p
ty

p
ix

el
s

It
er

at
iv

e
(I

) Analysis Processing

N
aï

v
e

C
o

rn
er

R
o

w
C

o
l

T
il

es

S
el

ec
ti

o
n

M
er

g
in

g

Single-threaded processing time [ms]

2 3479 40.94 1.34 3.93 4.68 2.24 1.09 1.19

1 120019 525.16 158.45 4.24 5.00 5.23 2.10 3.31

Multi-threaded processing time [ms]

2 3479 24.01 1.69 2.33 2.24 0.87 0.25 0.26

1 120019 237.57 178.06 3.02 2.33 1.82 0.38 0.52

In the case of the analysis stage, the naïve approach is

reasonably fast only if the number of missing pixels

is low. However, it can be very slow for a higher

number of missing pixels and does not scale with the

number of threads (due to memory bandwidth

starvation). Corners originating and rows-columns

approaches offer more consistent and predictable

results and noticeable speedup for parallel execution.

The tile-based approach is the fastest for all

multithreaded tests and offers competitive

performance for the single-threaded variant.

When inpainting processing is considered, the

“merging” approach (referred to as “M”) is slower

than the simpler “selection” method (referred to as

“S”), but the difference can be treated as negligible.

Table 3: Computational time analysis for A01 sequence.

S
o

u
rc

e
v
ie

w
s

E
m

p
ty

p
ix

el
s

It
er

at
iv

e
(I

) Analysis Processing

N
aï

v
e

C
o

rn
er

R
o

w
C

o
l

T
il

es

S
el

ec
ti

o
n

(S
)

M
er

g
in

g

(M
)

Single-threaded processing time [ms]

2 134887 308.84 11.86 15.31 18.72 11.98 7.16 7.41

1 522251 881.23 47.85 16.21 20.36 20.17 11.14 15.71

Multi-threaded processing time [ms]

2 134887 160.75 17.13 9.75 13.96 5.10 2.49 3.40

1 522251 433.29 58.60 9.75 14.07 9.92 3.53 5.27

Table 4: Inpainting computational time for all sequences.

Seq
Empty
pixels
(avg)

Inpainting time

[ms]

Inpainting time per

pixel [ns]

I S M I S M

A01 134904 166.3 8.99 9.31 1232.7 66.66 69.01

C01 225629 491.6 8.88 8.25 2178.9 39.34 36.56

C02 892321 1749.9 6.21 7.49 1961.1 6.96 8.40

D01 2448 22.9 1.02 0.96 9338.9 416.26 390.37

J01 36968 47.4 1.34 1.52 1281.8 36.27 41.00

J04 44346 60.2 2.07 1.83 1357.7 46.75 41.28

L01 114944 142.1 1.66 1.31 1236.2 14.41 11.40

L03 176439 223.6 2.00 3.09 1267.2 11.36 17.48

W02 38010 36.4 2.03 2.85 957.3 53.36 75.07

Avg. ERP 802.6 8.03 8.35 1790.9 37.65 37.99

Avg. Perspective 88.8 1.69 1.93 2573.2 96.40 96.10

All 326.7 3.80 4.07 2312.4 76.82 76.73

In Table 4 the summary for all test sequences was

presented. In this case, the fastest possible analysis

algorithm (tile-based) was used, and combined times

for analysis and processing were presented. All

results were gathered using multithreaded processing,

as the authors consider this scenario more relevant. In

general, the proposed algorithm is ~80 times faster

than the reference, iterative approach.

5.3 Quality evaluation

In the quality evaluation, a virtual view was

synthesized using two real views. Results of the

objective quality evaluation are presented in Tables 5

and 6, separately for each test sequence. As presented,

both proposed fast inpainting methods allow for

achieving similar quality as a more sophisticated and

complicated iterative approach, both in terms of WS-

PSNR and IV-PSNR.

Table 5: Quality of rendered virtual views: WS-PSNR.

Seq
WS-PSNR [dB]

ΔWS-PSNR [dB]

(compared to I)

I S M S M

A01 31.74 31.61 31.74 – 0.13 – 0.00

C01 37.65 37.81 37.92 0.16 0.27

C02 23.73 22.67 23.66 – 1.07 – 0.07

D01 37.64 37.62 37.62 – 0.01 – 0.01

J01 29.41 29.18 29.48 – 0.23 0.07

J04 28.12 27.90 28.16 – 0.21 0.05

L01 28.86 28.80 28.80 – 0.06 – 0.06

L03 26.69 26.26 26.54 – 0.43 – 0.15

W02 29.08 28.74 28.94 – 0.34 – 0.13

Average 30.32 30.07 30.32 – 0.26 – 0.00

Table 6: Quality of rendered virtual views: IV-PSNR.

Seq
IV-PSNR [dB]

ΔIV-PSNR [dB]

(compared to I)

I S M S M

A01 46.14 46.10 46.24 – 0.04 0.10

C01 47.44 47.66 47.64 0.21 0.20

C02 32.90 31.94 33.13 – 0.96 0.23

D01 47.52 47.47 47.44 – 0.05 – 0.07

J01 38.13 37.82 38.12 – 0.30 – 0.01

J04 37.20 37.05 37.33 – 0.15 0.12

L01 41.89 41.59 41.59 – 0.30 – 0.30

L03 32.23 31.77 32.09 – 0.46 – 0.14

W02 42.63 41.84 42.16 – 0.79 – 0.46

Average 40.67 40.36 40.64 – 0.31 – 0.04

Subjectively, rendered virtual views are similar

although the characteristics of the artifacts differ

between various methods (Fig. 7). In the iterative

approach, disocclusions are blurred, what is plausible

in smooth areas, but distractive in areas containing

edges (e.g., a building corner in Cyberpunk

sequence). Both fast inpainting methods preserve

edges much better due to horizontal and vertical

image analysis performed before the inpainting. It is

worth noting that the quality achieved by the

proposed algorithm is similar to the reference

iterative approach, however, the computation time is

about 100 times shorter (~4ms for proposed vs 326

for iterative).

5.4 Comparison against widely used
general inpainting algorithms

The comparison of the proposed approach against

state-of-the-art inpainting techniques was particularly

challenging. There are several algorithms designed

for the inpainting of synthesized views (Daribo,

2010), (Buyssens, 2017), (Cho, 2017), however

software with their implementations is not available.

Therefore, for this comparison, we decided to choose

two inpainting algorithms based on availability

(widespread software libraries) and a decent quality

of implementation. The first is an inpainting

algorithm based on the biharmonic equation

(Damelin, 2018) (“[Dam]”) with an implementation

available in a widely recognized “scikit-image”

image processing library. The second candidate is an

algorithm based on the fast marching method (Telea,

2004) (“[Tel]”) with an implementation available in

the widely used OpenCV library.

 In the case of the C02 sequence, the algorithm

(Damelin, 2018) was excluded due to excessive

computation time exceeding 10 minutes per frame

thus making it useless for real-time purposes. The

detailed result of computational time analysis is

presented in Table 7. On average, the investigated

algorithm is about three orders of magnitude slower

than the proposed one (they process frame in several

seconds in contrast to several milliseconds for the

proposed one).

Table 7: Inpainting computational time for all sequences.

Seq
Empty pixels

(average)

Inpainting time per frame [ms]

M [Dam] [Tel]

A01 134904 9.31 2406 27877

C01 225629 8.25 13489 7791

C02 892321 7.49 > 10 min 27723

D01 2448 0.96 320 104

J01 36968 1.52 511 465

J04 44346 1.83 1483 2093

L01 114944 1.31 15111 228

L03 176439 3.08 16624 1810

W02 38010 2.85 583 8156

Average (excl. C02) 4.07 6316 8472

Table 8: Quality of rendered virtual views: WS-PSNR.

Seq
WS-PSNR [dB]

ΔWS-PSNR [dB]

(compared to I)

M [Dam] [Tel] [Dam] [Tel]

A01 31.74 30.95 31.18 0.79 0.56

C01 37.92 35.92 35.84 2.00 2.08

C02 23.66 --- 21.56 --- 2.10

D01 37.62 37.46 37.35 0.16 0.27

J01 29.48 28.32 29.01 1.16 0.47

J04 28.16 25.3 25.76 2.86 2.40

L01 28.8 28.48 28.66 0.32 0.14

L03 26.54 26.61 26.11 – 0.07 0.43

W02 28.94 28.43 28.41 0.51 0.53

Avg excl. C02 31.15 30.18 30.29 0.97 0.86

The results of inpainting quality evaluation in terms

of WS-PSNR and IV-PSNR were presented in Table

8 and Table 9. In 95% of test cases, the proposed

algorithm offered better quality of inpainted pictures

when compared to (Damelin, 2018) and (Telea,

2004). On average, the objective quality achieved by

the proposed algorithm was ~0.9 dB better in terms of

WS-PSNR and ~1.05 dB better in terms of IV-PSNR.

Table 9: Quality of rendered virtual views: IV-PSNR.

Seq
IV-PSNR [dB]

ΔIV-PSNR [dB]

(compared to I)

M [Dam] [Tel] [Dam] [Tel]

A01 46.24 45.55 46.35 0.69 – 0.11

C01 47.64 45.63 45.31 2.01 2.33

C02 33.13 --- 30.29 --- 2.84

D01 47.44 47.05 46.83 0.39 0.61

J01 38.12 37.38 37.19 0.74 0.93

J04 37.33 34.95 34.68 2.38 2.65

L01 41.59 39.85 40.94 1.74 0.65

L03 32.09 32.04 31.26 0.05 0.83

W02 42.16 41.74 41.59 0.42 0.57

Avg excl. C02 41.58 40.52 40.52 1.05 1.06

5.5 Real-time view rendering vs. state-
of-the-art view rendering

In the last experiment, the entire view rendering

algorithm (Stankowski, 2023), which includes the

proposed inpainting technique was compared to the

state-of-the-art view synthesis software – RVS (ISO,

2018). The results – both computational time and

objective quality – are reported in Table 10.

Table 10: The real-time view synthesizer (Stankowski,

2023) with proposed fast inpainting vs. state-of-the-art RVS

(ISO, 2018).

S
eq

u
en

ce
 Rendering

time [ms]
WS-PSNR [dB] IV-PSNR [dB]

R
V

S

P
ro

p
.

R
V

S

P
ro

p
.

Δ

R
V

S

P
ro

p
.

Δ

A01 15885 39.7 31.90 31.73 – 0.17 45.04 46.24 1.20

C01 15547 36.9 37.55 37.92 0.37 46.93 47.64 0.71

C02 7878 19.0 22.63 23.66 1.03 31.45 33.13 1.68

D01 3838 8.8 38.51 37.62 – 0.89 48.08 47.44 – 0.64

J01 3370 7.7 28.83 29.48 0.65 37.02 38.12 1.10

J04 3723 7.8 27.14 28.16 1.02 36.68 37.33 0.65

L01 3355 8.4 29.70 28.80 – 0.90 40.77 41.59 0.82

L03 3285 8.1 26.90 26.54 – 0.36 32.31 32.09 – 0.22

W02 3437 8.2 29.40 28.94 – 0.46 41.60 42.16 0.56

Avg 30.28 30.32 0.03 39.99 40.64 0.65

In terms of subjective quality, the real-time view

synthesizer slightly outperforms the RVS, especially

in disoccluded regions, where RVS tries to preserve

continuity between reprojected pixels (using triangle-

based reprojection (Fachada, 2018)) while all tested

inpainting methods do not introduce distractive

artifacts (Fig. 7).

6 CONCLUSIONS

In the paper, we have presented an efficient inpainting

method, which can be used in the virtual view

rendering in a practical, real-time immersive video

system. The proposal allows for achieving a high

Quality of Experience for an immersive video system

user while requiring extremely short computational

time. The proposed approach is based on splitting the

inpainting process into two highly parallelizable

stages: view analysis and hole filling.

The experimental results show that in a typical

case, where a FullHD virtual view is rendered using

two input views, the proposed inpainting requires less

than 2 ms per frame (result averaged over 6 test

sequences). Moreover, the objective and subjective

quality of rendered views is similar to using more

sophisticated and time-consuming inpainting

methods.

 The proposal was implemented within a real-

time CPU-based virtual view synthesizer

(Stankowski, 2023) developed by the authors of this

manuscript, showing that it is possible to obtain vastly

fast rendering, allowing the development of a

practical, consumer immersive video system.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of
Education and Science of the Republic of Poland.

REFERENCES

Barnes, C., et al. (2009). “Patch-Match: a randomized
correspondence algorithm for structural image
editing,” ACM Tr. on Graphics, vol. 28, no. 3.

Bertalmio, M., et al. (2000). “Image inpainting,”
SIGGRAPH 2000, New Orlean, USA.

Boissonade, P., Jung, J. (2018). “Proposition of new
sequences for Windowed-6DoF experiments on
compression, synthesis, and depth estimation,” Doc.
ISO/IEC JTC1/SC29/WG11 MPEG/M43318.

Boyce, J., et al. (2021). “MPEG Immersive Video Coding
Standard,” Proc. IEEE 119 (9), pp. 1521-1536.

Buyssens, P., et al. (2017). “Depth-guided disocclusion
inpainting of synthesized RGB-D images,” IEEE Tr.
on Image Proc., vol. 26, no. 2, pp. 525-538.

Cho, J.H., et al. (2017). “Hole filling method for depth
image based rendering based on boundary decision,”
IEEE Signal Proc. Letters 24 (3), pp. 329-333.

Criminisi, A., et al. (2004). “Region filling and object
removal by exemplar-based image inpainting,” IEEE
Tr. on Image Proc. 13 (9), pp. 1200-1212.

Damelin, S.B., Hoang, N. (2018). “On Surface Completion
and Image Inpainting by Biharmonic Functions:

Numerical Aspects,” Int. Journal of Mathematics and
Mathematical Sciences, 2018 (3950312).

Daribo, I., et al. (2010). “Depth-aided image inpainting for
novel view synthesis,” MMSP, Saint-Malo, France.

Domański, M. et al. (2016). “Multiview test video
sequences for free navigation exploration obtained
using pairs of cameras,” Doc. ISO/IEC
JTC1/SC29/WG11, MPEG M38247.

Doré, R. (2018). “Technicolor 3DoF+ test materials,”
ISO/IEC JTC1/SC29/WG11 MPEG, M42349, San
Diego, CA, USA.

Doré, R., et al. (2020). “InterdigitalFan0 content proposal
for MIV,” Doc. ISO/IEC JTC1/SC29/ WG04 MPEG
VC/ M54732, Online.

Doyen, D., et al. (2018). “[MPEG-I Visual] New Version
of the Pseudo-Rectified Technicolor painter Content,”
Doc. ISO/IEC JTC1/SC29/WG11 MPEG/M43366.

Dziembowski, A., et al. (2016). “Multiview Synthesis –
improved view synthesis for virtual navigation,” PCS
2016, Nuremberg, Germany.

Dziembowski, A., Domański, M. (2018). “Adaptive color
correction in virtual view synthesis,” 3DTV Conf.
2018, Stockohlm – Helsinki.

Dziembowski, A., Stankowski, J. (2018). “Real-time CPU-
based virtual view synthesis,” 2018 ICSES Conf.,
Kraków, Poland.

Dziembowski, A., et al. (2019). “Virtual view synthesis for
3DoF+ video,” PCS 2019, Ningbo, China.

Dziembowski, A., et al. (2022). “IV-PSNR—The Objective
Quality Metric for Immersive Video Applications,”
IEEE T. Circ. & Syst. V. Tech. 32 (11).

Fachada, S., et al. (2018). “Depth image based view
synthesis with multiple reference views for virtual
reality,” 3DTV-Conf, Helsinki, Finland.

Fujii, T., et al. (2006). “Multipoint measuring system for
video and sound – 100-camera and microphone
system,” IEEE Int. Conf. on Mult. and Expo.

Huang, H., et al. (2019). “System and VLSI implementation
of phase-based view synthesis,” 2019 ICASSP
Conference, Brighton, UK.

ISO. (2018). “Reference View Synthesizer (RVS) manual,”
Doc. ISO/IEC JTC1/SC29/WG11 MPEG, N18068.

ISO. (2023). “Common test conditions for MPEG
immersive video,” ISO/IEC JTC1/SC29/WG04
MPEG VC, N0332, Antalya, Turkey.

Jeong, J.Y., et al. (2021). “[MIV] ERP Content Proposal for
MIV ver.1 Verification Test,” ISO/IEC JTC1/
SC29/WG04 MPEG VC, M58433, Online.

Khatiullin, A., et al. (2018). “Fast occlusion filling method
for multiview video generation,” 3DTV Conf. 2018,
Stockholm, Sweden.

Kroon, B. (2018). “3DoF+ test sequence ClassroomVideo,”
ISO/IEC JTC1/SC29/WG11 MPEG, M42415, San
Diego, CA, USA.

Lai, Y., et al. (2017). “Three-dimensional video inpainting
using gradient fusion and clustering,” ICNC-FSKD
Conf. 2017, Guilin, China.

Levin, A., et al. (2003). “Learning how to inpaint from
global image statistics,” 9th Int. Conf. on Computer
Vision, Nice, France.

Li, Y., et al. (2019). “A real-time high-quality complete
system for depth image-based rendering on FPGA,”
IEEE T. Circ&Sys. for V. Tech. 29(4), pp. 1179-1193.

 Liu, H., et al. (2012). “Global-background based view
synthesis approach for multi-view video,” 3DTV
Conf. 2012, Zurich, Switzerland.

Luo, G., Zhu, Y. (2017). “Foreground removal approach
for hole filling in 3D video and FVV synthesis,” IEEE
Tr. Circ. & Syst. Vid. Tech. 27 (10), pp. 2118-2131.

Mao, Y., et al. (2014). “Image interpolation for DIBR view
synthesis using graph Fourier transform,” 3DTV Conf.
2014, Budapest, Hungary.

Microsoft Developer Network Library. (2020). Acquiring
high-resolution time stamps. https://msdn.microsoft.
com/enus/library/windows/desktop/dn553408.

Mieloch, D., et al. (2020). “Depth Map Estimation for Free-
Viewpoint Television and Virtual Navigation,” IEEE
Access, vol. 8, pp. 5760-5776.

Mieloch, D., et al. (2020). “[MPEG-I Visual] Natural
Outdoor Test Sequences,” Doc. ISO/IEC JTC1/
SC29/WG11 MPEG/M51598, Brussels.

Mieloch, D., et al. (2023). “[MIV] New natural content –
MartialArts,” ISO/IEC JTC1/SC29/WG04 MPEG
VC, M61949, Online.

Müller, K., et al. (2011). “3-D Video Representation Using
Depth Maps,” Proc. IEEE 99 (4), pp. 643-656.

Nonaka, K., et al. (2018). “Fast plane-based free-viewpoint
synthesis for real-time live streaming,” 2018 VCIP
Conf., Taichung, Taiwan, pp. 1-4.

Oh, K.J., et al. (2009). “Hole filling method using depth
based inpainting for view synthesis in free viewpoint
television and 3-D video,” PCS 2009, Chicago.

Stankiewicz, O., et al. (2018). “A free-viewpoint television
system for horizontal virtual navigation,” IEEE Tr. on
Multimedia 20 (8), pp. 2182-2195.

Stankowski, J., Dziembowski, A. (2023). “Massively
parallel CPU-based virtual view synthesis with atomic
z-test,” WSCG 2023 Conf., Pilsen, Czechia.

Sun, Y., et al. (2017). “Weighted-to-Spherically-Uniform
Quality Evaluation for Omnidirectional Video,” IEEE
Signal Processing Letters 24.9(2017):1408-1412.

Tanimoto, M., et al. (2012). “FTV for 3-D Spatial
Communication,” Proc. IEEE 100, pp. 905-917.

Tao, L., et al. (2021). “A Convenient and High-Accuracy
Multicamera Calibration Method Based on Imperfect
Spherical Objects,” IEEE Tr. Instr. & Meas. 70.

Telea, A. (2004). “An image inpainting technique based on
the fast marching method,” Journal of Graphics Tools
9 (1), pp. 23-34.

Tezuka, T., et al. (2015). “View synthesis using superpixel
based inpainting capable of occlusion handling and
hole filling,” PCS 2015, Cairns, Australia.

Vadakital, V.K.M., et al. (2022). “The MPEG Immersive
Video Standard—Current Status and Future Outlook,”
IEEE MultiMedia 29 (3), pp. 101-111.

Wang, O., et al. (2011). “StereoBrush: interactive 2D to 3D
conversion using discontinuous warps,” 8th
Eurographics Symposium on Sketch-Based Interfaces
and Modelling, Vancouver, Canada.

Wien, M., et al. (2019). “Standardization status of
immersive video coding,” IEEE J. Emerg. and Sel.
Top. in Circ. and Syst. 9 (9).

Xiang, S., et al. (2013). ”A gradient-based approach for
interference cancelation in systems with multiple
Kinect cameras,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Beijing, China, pp. 13–16.

Yao, C., et al. (2014). “Depth map driven hole filling
algorithm exploiting temporal correlation
information,” IEEE Tr. on Broadcasting, vol. 60, no.
2, pp. 510-522.

Zinger, S., et al. (2010). “Free-viewpoint depth image based
rendering,” J. of Visual Communication and Image
Representation 21 (5-6), pp. 533-541.

RVS (ISO, 2018) Iterative inpainting (I) Selection inpainting (S) Merging inpainting (M)

Figure 7: Fragments of views rendered using real-time synthesizer (Stankowski, 2023) with different inpainters (columns

2 – 4), compared to views rendered using state-of-the-art view synthesizer – RVS (ISO, 2018). Sequences (from top):

C02, J01, W02.

