
Embedded debugging for NoCs

Marta Stępniewska, Olgierd Stankiewicz, Adam Łuczak, Jakub Siast
Chair of Multimedia Telecommunications and Microelectronics

Poznan University of Technology
Poznań, Poland

{mstep, ostank, aluczak, jsiast}@multimedia.edu.pl

Abstract—This paper presents a proposal of debugging
enhancements embedded in Network-on-Chip. Such approach
makes debugging functionality hardly attainable in classical
hardware methodology. We introduce real-time packet sniffing
and monitoring with the use of multicast transmission. Each
packet in the debug mode is additionally sent to an off-chip
control device, called Off-chip Debugging Host (ODH), as a
multicast stream. This enables packet sniffing similar to the one
that is available in computer networks. Protocol enhancements
also include mechanisms for fast and simple configuration.
Thanks to introduced control packets, Off-chip Debugging Host
is able to remotely read NoC’s settings as well. The proposal has
been assessed basing on hardware implementation.

Index Terms—NoC; debugging; H.264; AVC; design-for-
debug;

I. INTRODUCTION
Network on Chip (NoC) is a relatively new approach that

provides a methodology to design Systems on Chip (SoC)
interconnections [1]-[4]. It allows for separating the design of
communication infrastructure from processing elements (PEs)
implementation. Such approach provides possibility of reusing
network and processing modules. Application of NoC as a
communication infrastructure leads to a significant reduction of
design time of the whole system. These advantages are
important since current designs became more and more
complex and include tens or even hundreds of PEs.

By these modules however, some errors may arise during
designing phase. Moreover, many system failures result from
extensive PEs interaction that is hardly predictable before
connecting them together. Debuging of current NoC-based
Systems on Chips requires communication-oriented approach
that focuses on correctness of messages that are exchanged
between PEs. In order to apply this method it is necessary to
embed some debugging functionality in NoC architecture i.e.
design-for-debug, that helps to understand possible SoC’s
failures.

The well known debugging technique which employs
standard for in-circuit test is JTAG [5] protocol, which
originally was intended for system management tasks. Such
approach requires two physical components: the first is test
access port (TAP) which interprets JTAG protocol, and the
second is boundary scan register (BSR). Implementation of
these modules in each PE consumes large amount of chip

resources regarding scale of current designs. Tang and Xu in
[6] propose to use JTAG as a debug interface in conjunction
with NoC. A chip includes a debugging core, called “debug
agent”, that contains TAP. “Debug agent” exchanges
debugging data with off-chip controller through Test Access
Port. Off-chip controller is a hardware that transfers data
gathered from the chip to debug software placed on PC.
Moreover, in [6], authors suggest to attach debug probes to the
core under debug (CUD) i.e. each tested PE. These probes are
connected to the NoC via separate network interface. Such
solution is not cost efficient (in terms of chip area) due to
significant rise of NoC elements.

In turn, Yi et al. proposed in [7] and [8] so called “core
debug supporters” which are small distributed debugging cores.
These are attached to the system cores and to test&debug
interface unit for the sake of management of transactions.
Test&debug control data are sent via data control bus IEEE
1149.1 but data application and observation are transported
through parallel NoC data path. Despite its advantages, such
solution doesn’t allow for watching messages that are sent in
NoC.

In [9] and [10] authors propose transaction-based NoC
monitoring. In this proposal, debugging cores, called
“monitors” are attached to network elements. These monitors
make measuring link performance and analysing of protocol
specific data possible. Although the cost of such monitors (in
terms of occupied chip resources) may be controlled by
reducing their implemented functionality, it still may be
significant for hardware-cost-sensitive designs. Moreover, such
solutions significantly impact performance of the network or
negatively influence chip resources, because results of traffic
analysis are transported over NoC [9] or through dedicated
links [10] respectively.

In this paper, we try to tackle abovementioned problems.
We propose to add some low-cost (in terms of chip resources)
enhancements to NoC infrastructure, that allow to observe and
analyse data exchanged between PEs, outside the chip. The
main idea of our novel NoC-based communication-oriented
approach is presented in Section II. It comprises NoC
enhancements described in Section III, which are used in order
to provide devised debugging functionality (Section IV).
Because our work is focused on FPGAs, assesment of the idea
has been performed with the use of exemplary FPGA
implementation of AVC/H.264 video decoder. Sections V and
VI present results regarding use-cases and chip size.

II. IDEA OF THE PAPER
This paper presents a proposal of debugging enhancements

to support communication-oriented debug of a system being
designed. The proposed novel set of debugging mechanisms
consists of:

• Control device that analyzes NoC packets, described
below, called Off-chip Debugging Host (ODH),

• Set of control packets for management of debugging
process,

• Programmable communication channels, that enable
packet sniffing, novel for NoC networks,

• Novel NoC multicast transmission mode to reduce
required bandwidth (debugging overhead).

The main element of the proposed debugging approach
(Fig. 1) is Off-chip Debugging Host (ODH). ODH is an off-
chip software entity run entirely on a personal computer. It is
connected to the system through a physical interface. Such off-
chip ODH placement allows advanced debugging tools to be
implemented without affecting system hardware resource
consumption. Moreover, new functionalities can be added to
ODH without time-consuming design resynthesis process.

 The role of ODH is to provide user interface to the
debugging functionality, like: NoC monitoring, packet sniffing,
applying test vectors, gathering debugging data, handling
exceptions or emulating hardware PEs in software.

Figure 1. Idea of NoC-debugged system with ODH.

The proposed enhancements are not network-specific in
principle. They can be embedded into an already designed and
implemented Network-on-Chip without having serious impact
on hardware complexity. Moreover, some of them, like
multicast transmission mode, can be successfully exploited in
regular NoC operations.

The devised ideas can be applied to variety of network
topologies, like mesh, tree, ring, etc. Also, routing algorithm
need not to be altered significantly – it can be geographic
(coordinate) -based like in 2D-mesh) as well as any other, as
long as it can support multicast mode.

In our approach, network is an abstract object which
allows communication between PEs (Fig. 1) with the use of
endpoints (EP). These endpoints implement simple
networking functions and provide network interface for the
processing elements.

All of these compatibilities together with the variety of
network architectures increase applicability of our proposal.

III. PROPOSED DEBUGGING ENHANCEMENTS
In order to introduce a novel debugging functionality we

propose some network enhancements. Although, in principal,
our proposal abstracts from exact network specifics, the
following tools may impose modifications to the existing NoC
implementations. Results presented in Section VI, show that
the hardware cost is not significant.

A. Off-chip Debugging Host
Off-chip Debugging Host constitute user interface for

debugging functionality. It is composed of software
applications that run on a personal computer (Fig. 2).

ODH require only minimal unavoidable hardware: a
physical connection to the NoC communication infrastructure.
This implements NoC protocol and provides a gateway to the
NoC. In this way, with use of appriopriate API (Application
Programming Interface), debugging applications are able to
send and receive packets and thus are logically part of the NoC.

Figure 2. Architecture of Off-Chip Debugging Host, connected to system
with Network-on-Chip.

ODH software comprises variety of debugging applications
which provide advanced debugging tools and graphical
interface for the user. These include: packet sniffers and
parsers, NoC management and setup toolkits, NoC monitors
and test vector senders.

B. Control Packets
NoC protocol is enhanced with support for control packets

classes, which functionality is presented in Table I.

These control packets offer functionality that is necessary
for efficient debugging control by ODH. Control packets
described in Table I are introduced to read and write EP and PE
configuration. However, GET_STATUS packet can be applied
to other network elements, such as switches, and allows for
reading rooting tables.

TABLE I. CONTROL PACKETS IN NOC

Control Packet Description

PE_ENABLE Enables or disables a PE

SET_DST_ADDR Sets new destination address in endpoint

GET_DST_ADDR Request for current destination address

GET_STATUS Request for status in PE or network
element e.g. switch, EP

GET_PE_DESC_WD Request for PE build-in word specifying
e.g. type, functionality, version etc.

This work was supported by the public funds as a research project.

Control Packet Description

PE_ENABLE Enables or disables a PE

SET_DST_ADDR Sets new destination address in endpoint

PE_RST Provides soft PE reset

C. Programmable communication channels
Communication channel is a path in network between a

source endpoint and a destination endpoint. In typical NoC
approach, these are staticly set at design time and cannot be
altered dynamicly. We propose a novel approach in which
communication channels are programmable: communication
channel can be arranged between any two PEs at run-time. To
achive that, processing element endpoints are extended with
programmability of destination addresses (please note that EP
may have more than one destination address). For example,
destination address list of EP (originally requested by the PE)
can be extended by ODH with an additional address for
debugging. Moreover, originally set addresses can be
substituted with another ones.

This constitutes an additional virtual abstraction layer over
communication in NoC. Such abstraction, gives an opportunity
to compare work results between resources (for example
different versions of designed PE – Fig.3 a) versus b) – PEs 2
and 3). Apart from debugging function, programmable
destination addresses can also be used to implement network-
based resource management. Such management allows to
distribute tasks between redundant system resources
dynamically or to attach some restricted resources to many
clients alternately.

EP

PE 3

EP

PE 2

EPPE 1

EP

PE 3

EP

PE 2

EPPE 1

a) ODH sets a new
destination for PE 1

b) new configuration

SoC SoC

SET_DST_ADDR
Control
packet

Off-chip
Debugging

Host

PCC PCC

Figure 3. Programmable communication channels (PCC)
reconfiguration performed by ODH in real-time.

D. Multicast
Classic NoC networks support only unicast transmission

that allows for delivering a single packet between single source
and single destination [11]. Such approach leads to significant
traffic overhead in case of use of debugging mechanisms (like
packet sniffing) because traffic has to be duplicated at the
beginning of packet routes (Fig. 4a).

To overcame this problem, in this work we propose to
enhance NoC with multicast transmission and use it for
debugging. Multicast is a packet delivery strategy which allows
for simultaneous transmission of packet over network to
multiple destinations only once over each link on the path. The
packet is duplicated only in case of splitting routes.

Implementation of multicast on the top of existing unicast
architecture is rather straighforward: instead of single
destination address (Fig. 4a), a list of multiple addresses is
assigned to each multicast packet (Fig. 4b). Of course, at some
switching point of the network, the packet is duplicated, but in
case of multicast transmission it is done as far from the source
as possible. Finally, packet is transmitted to every destination
from the address list. Such functionality, allows for sending a
copy of the packet to a network monitoring element like ODH
without much bandwith loss.

Figure 4. Packet propagation diagram for unicast transmission to multiple
destinations (a) and for proposed multicast communication (b).

IV. PROPOSED FUNCTIONALITY.
The abovementioned proposed network enhancements

extend functionality of NoC beyond pure communications.
These enhancements are a foundation for desired debugging
tools. Debugging functionalities proposed in this paper, of
which some examples are mentioned below, heavily depend on
adjustment of Off-chip Debugging Host software for the
specific application. We propose the following debugging
tools:

A. Packet sniffing in endpoint debug-mode
Packet sniffing is a technique of exhaustive packet

monitoring commonly known in computer networks. In this
paper, we propose to enhance NoC network with such
debugging functionality. In our proposal, packet sniffing is
enabled in so called debug mode which is initiated by ODH.
When in debug-mode, endpoints use multicast transmissions
and add ODH address to each packet address list. ODH
receives copies of the packets and uses special packet parsing
software application to recognize packets and then present to
the user. Further, correctness of packets and data format are
verified. Debug-mode can be switched on and off for each PE
endpoint individually.

B. Reading configuration and status
Off-chip Debugging Host can read configuration and status

of any network element. Such functionality is useful when
configuration of SoC PEs has to be verified. With the proposed

tools, network configuration can be retrieved dynamically.
Also the types of attached PEs can be recognized. This is a
faster way than manual configuration and can help evading
human mistakes in managing network configuration.

C. Turning the PEs on and off
User can turn PEs on and off by sending control packets

(PE_ENABLE packet). It is usedl when processing element
declines to work as a potential result of an error. Knocked PE
(Fig. 5 – PE 2) can be then replaced with an alternative
implementation (e.g. other revision of design – Fig. 5- PE 3).

Figure 5. Turning exemplary PE 2 off
and turning exemplary PE 3 on.

D. PE emulation
When only a sub-part of the design is ready to be placed on

a chip and the rest is still in simulation phase, it may be useful
to split the design into hardware and software. Namely,
hardware is a part of design that is already implemented, and
software emulates missing or broken part of a design. Partial
design emulation may easily be done using devised Off-chip
Debugging Host. On Fig. 6, exemplary PE 4 emulates
hardware PE 2, which may be broken or simply not
implemented in hardware completly.

Figure 6. PE emulation on Off-chip Debuging Host.

V. ASSESMENT.
Assessment of a debugging functionality is not a straight-

forward task. There are at least two factors that have to be
concerned: savings of development time during the design
process and costs of implementation in silicon. The results for
the latter factor are difficult to be measured precisely, due to
automatic optimization during synthesis process, but can be
estimated (Section VI).

As for the first factor, unfortunately it is difficult to
objectively measure development time spent on debugging
with and without debugging amenities, in order to compare
them. In the real world, repeting the design process is not
possible, because it would have to be completed by the same
persons with the same initial knowledge of the problem. The
other option is to get by the design process many times, under
random human conditions, to determine the design time
statistically. This was unobtainable for us, because design of
typical system takes about few person-years, and there would
have to be tens or even hundreds of experiments done
simultaneously.

Instead of this, we have assessed the proposed ideas during
designing, implementing and testing of AVC/H.264 video
decoder. At that time, we have observed many examples of
debugging functionality usage, that otherwise would be very
difficult to attain. An example scenario is presented below.

The whole AVC/H.264 video decoder project was
implemented on two separate circuit boards (Fig. 7). This was
motivated by the size of the project (which has an impact on
the synthesis time) and also by a variety of external
components exploited by the system (that were difficult to
connect to a single FPGA). The boards were developed
separately in order to hasten the design.

At the time of linking the boards we encountered a problem
– the boards definitly declined to work together. After
launching the decoding task, both boards just hung-up. Since
the simulation worked perfectly, the problem must have laid in
the hardware part.

Figure 7. Assesed AVC/H.264 decoder system on two circuit boards.

Without debugging functionality, we would be forced to
resynthesize the whole project with additional testing benches
in order to conclude what was wrong. The transmission
through the link was corrupted, there was some kind of hazard
situation somewhere or simply there was a synthesis error.

In spite of doing extra work, we have used the proposed
functionality of reading configuration and status
(GET_STATUS and GET_PE_DESC_WD packets) of
network elements on the Circuit Board 2. The whole process

ran correctly – the packets were able to propagate from ODH
to destination EPs and get back again. The verdict was that the
link is operating correctly as well as network infrastructure on
both boards.

The next step was to run decoding task and try to find the
reason of the crash. In this case, we have used packet sniffing
tool in a debug-mode (Fig. 8) with the use of
SET_DST_ADDR packets.

– destination address filtering function enable
– source address filtering function enable
– filter execution button
– filtered data save button
– filtered data preview with protocol analyzer

Figure 8. Examplary packet sinffing with Packet parser

application for “Intra” PE.

Analysis of the packets delivered to ODH, which were sent
from/to Circuit Board 1, revealed that there were errors in
“Intra” (Circuit Board 1 – Fig. 7) output formatting sub-
module. In order to find the exact source of the problem we
have switched “Intra” PE off (PE_ENABLE), plugged “Intra”
processing element emulator into ODH, and redirected other
PEs’ requests accordingly (Fig. 9).

Figure 9. ‘”Intra” PE emulation in AVC/H.264 decoder.

Once we have done it, the whole project run well, which
has narrowed down list of potential error sources to mentioned
“Intra” processing element. Detailed analysis of captured
packets led to creation of additional test vectors which finally
resulted in bug eradication from the “Intra” module at the
simulation level.

The whole error identification process took few hours
instead of few days, which is typical in such situations.

Although it is just an example of benefits that result from
proposed debugging functionality, it is worth to mention, ast
scenarios like the one described above are very likely to
happen.

VI. RESULTS
The exemplary AVC/H.264 project has been modeled in

Verilog HDL and synthesized for Xilinx Virtex 5 FPGA
devices to assess size costs of the proposed tools.

As mentioned before, the estimation of real chip occupation
by network infrastructure is a very difficult task. Synthesis of
the whole system without any communication network is not
representative, because such synthesis would be affected by
optimization.

To estimate growth of the costs of costs of the proposed
tools, first we have measured the whole NoC contribution to
the whole project size. Network implemented on two boards
includes three 3-port switches (Switch 3p) and one 4-port
switch (Switch 4p). Morover, 4 bidirectional (receiver and
transceiver) endpoints (EP BD) were used that support both
receiving and transmitting data. Additionaly, 8 endpoints used
as receivers (EP RX). Implemented routing protocol is static,
i.e. the switches use build-in static routing tables. Links
between network primitives are 32 bits wide with 4 bit
description word. The endpoints (both BD and RX) have 2-port
multiplexer build-in. This way, they can be connected serially
without using switches between them and save chip resources,
since they are smaller than ordinary switches. As presented in
Table II, the cost of used NoC network is relatively small -
16% in LUTs and 13% in registers cost of whole AVC/H.264
decoder.

TABLE II. NOC CONTRIBUTION IN AVC/H.264 DECODER

Unit
Unit Size

LUTs Registers

Whole project 34354 29723
Network
infrastructure 5344 3952

Network contribution 16% 13%

TABLE III. CONTRIBUTION OF PROPOSED TOOLS’ COST IN NOC
MODULES

Network
primitive

With tools Without tools Tool
contribution

LUTs Regs LUTs Regs LUTs Regs

Switch 3p 658 570 615 523 6,5% 8,2%

Switch 4p 1068 759 1008 699 5,6% 7,9%

EP BD 428 335 376 292 12% 13%

EP RX 328 280 280 237 15% 15%

What is more important, proposed debug tools have very
small impact on size of the whole NoC. Table III sums the
hardware costs of implementation of NoC’s components - with
and without the proposed tools. Tool contribution in case of 3

and 4 port switches is at most 8.2% for register number. For
endpoints (marked as EP BD for bidirectional interface and EP
RX for receiver-only interface) it can be noticed that the worst
case is 15% growth of the registers number.

Taking results of Table II and Table III into consideration,
it can be concluded that resultant impact of having proposed
debugging functionality is relatively small.

We have also assessed the efficiency of the proposed
multicast transmission mode. This efficiency depends on
network topology and ODH placement in the network i.e. how
source–destination path differs from source–ODH route. Table
IV compares size of traffic when using multicast transmission
to ODH in debug mode with the unicast approach. Both results
are compared with traffic in the application in case of the
debug mode switched off in all IP cores. Moreover our
implementation allows for choosing single PE for debug,
which can improve traffic statistics. Table IV considers 3
cases: debugging inverse transform module, deblocking filter
only, and debugging all PEs in AVC/H.264 decoder. First two
cores are responsible for about 50% of whole traffic in
application, so the ODH needed to be placed in the vicinity of
both. Comparing results for the third case i.e. debugging all
cores in AVC/H.264 application, the gain achieved by mulicast
transmission is about 50%.

TABLE IV. MULTICAST EFFICIENCY

Debugged PEs
WITHOUT
transmission

to ODH

WITH
MULTICAST
transmission

to ODH

WITH
UNICAST

transmission
to ODH

Inverse
transform
module

100% 108% 118%

Deblocking
filter 100% 113% 128%

Whole
AVC/H.264

decoder
100% 150% 200%

VII. CONCLUSIONS
Debugging is an integral part of the design process but so

far it has been omitted and treated like a standalone problem.
Experiences in that matter lead to conclusion, that design of a
SoC is an iterative process, in which debugging and evolving
occur alternately.

In this paper, we have introduced a new debugging
approach in which the design is debugged with the use of Off-
chip Debugging Host. ODH provides user interface to
debugging functionalities, like applying test vectors, gathering
debugging data and handling exceptions. Because such off-chip
host runs entirely on personal computer, significant amount of
hardware chip resources can be saved. Another advantage of
such approach is that new functionalities can be added to ODH
without time-consuming design resynthesis process.

Our novel debugging approach is based on network
enhancements that can easily be embedded into variety of NoC

networks. We have described these enhancements. They
include proposals that are new to Networks-on-Chip, like
programmable communications channels. We have discussed
functionality benefits resulting from those enhancements,
showing possible usage like: network packet sniffing and
monitoring, reading of configuration and status of attached PEs
and PE emulation on Off-chip Debugging Host.

Finally, we have made an assessment of the proposed
debug system on an exemplary real debugging scenario. As a
conclusion we point out that the proposed enhancements
provide high level debugging methodology and can
significantly speed up implementation process. Moreover,
synthesis results in Section VI show that cost of implementing
the required network enhancements is slight. Tool contribution
in case of the endpoint is not more than 15% and in case of
switches it is less than 8,2%. Costs to benefits ratio incline
towards approach in which debug functionality is incorporated
in the SoC even in the final product, to enable future in-the-
field debugging, modifications and enhancements.

REFERENCES
[1] C. Chou, R, Marculescu, “Run-Time Task Allocation Considering User

Behavior in Embedded Multiprocessor Networks-on-Chip”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29, no. 1, pp. 78-91, 2010.

[2] Q. Yu, P. Ampadu, “A Flexible Parallel Simulator for Networks-on-
Chip With Error Control” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 29, no. 1, pp. 103-116
2010.

[3] A. Ejlali, B.M. Al-Hashimi, P. Rosinger, S.G. Miremadi, L. Benini,
“Performability/Energy Tradeoff in Error-Control Schemes for On-Chip
Networks”. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 18, no. 1, pp. 1-14, 2010.

[4] C. Hilton, B. Nelson, “PNoC : a flexible circuit-switched NoC for
FPGA-based systems”, IEE Proceedings on Computers and Digital
Techniques, vol.153, no.3, pp. 181-188, 2006.

[5] IEEE Std 1149.1-1990 IEEE Standard Test Access Port and Boundary-
Scan Architecture –Description.

[6] S. Tang, Qiang Xu; , "A Multi-Core Debug Platform for NoC-Based
Systems," Design, Automation & Test in Europe Conference &
Exhibition, pp.1-6, 16-20 April 2007.

[7] H. Yi, S. Park and S. Kundu, "On-Chip Support for NoC-Based SoC
Debugging," IEEE Transactions on Circuits and Systems I: Regular
Papers, no.99.

[8] H. Yi, S.Park and S. Kundu, "A Design-for-Debug (DfD) for NoC-
Based SoC Debugging via NoC," 17th Asian Test Symposium, pp.289-
294, 24-27 Nov. 2008.

[9] C. Ciordas, K. Goossens, T. Basten, A. Radulescu and A. Boon,
"Transaction Monitoring in Networks on Chip: The On-Chip Run-Time
Perspective," International Symposium on Industrial Embedded
Systems, pp.1-10, 18-20 Oct. 2006.

[10] B. Vermeulen and K. Goossens, "A Network-on-Chip monitoring
infrastructure for communication-centric debug of embedded multi-
processor SoCs," International Symposium on VLSI Design,
Automation and Test, pp.183-186, 28-30 April 2009.

[11] Erno Salminen, Ari Kulmala, Timo D. Hämäläinen, Survey of Network-
on-chip Proposals, White Paper, OCP-IP, March 2008.

