
Algorithm for real-time comparison of audio streams

for broadcast supervision

Mateusz Lorkiewicz, Jakub Stankowski, Krzysztof Klimaszewski

Chair of Multimedia Telecommunications and Microelectronics,

 Poznań University of Technology, Poland

jstankowski@multimedia.edu.pl

Abstract - The paper deals with an efficient method of comparison

of audio streams that can be compressed using lossy compression

algorithms and, as well, delayed by an unspecified number of

samples due to transmission and processing. The algorithm bases

on the signal envelope correlation between audio streams . The

performance of the algorithm is evaluated using different

acceleration methods available in modern desktop computers.

Keywords - audio comparison, envelope correlation

I. INTRODUCTION

Media broadcasting requires continuous monitoring of the
quality of the broadcasted content. Any error in transmitted
stream is immediately visible (or audible) for all users. The
errors in transmission are mainly caused by noise or
interference, but they may occur also due to other, less obvious
reasons. Mistakes at the stage of stream preparation are an
example of those reasons. Therefore, in order to preserve high
quality of services, there is a need for real time supervision of
the transmitted streams. For example, it is critical to determine
if the headend transmits correct signal to the subscribers.

This paper concentrates on algorithm developed for
automatic and unattended supervision of audio streams for
broadcasting purposes. The most important part of supervision
system is an algorithm that is used to determine similarity or
dissimilarity of audio streams.

Such an algorithm needs to meet some key requirements that
would distinguish it from typical off-line audio samples
comparison. The most important requirements are mostly
connected with a real-time operation:

 the algorithm has to operate in real time, on live
broadcasted signals,

 the algorithm has to operate without excessive
buffering, since it is impossible or impractical to store
longer part of track and process it offline,

 the error in broadcasted stream has to be detected as
soon as possible with the lowest possible delay in order
to reduce the time when erroneous signal is transmitted,

 the computational complexity has to be low enough to
allow real-time operation, even when a higher number
of audio streams has to be analyzed.

Besides previously mentioned difficulties, the broadcast
applications are inherently connected with media format

conversion, media encoding and transcoding. Therefore, the
audio comparison algorithms have to meet additional
requirement:

 algorithm must be resilient for signal modifications
introduced by transcoding.

In practice, two different types of transcoding must be
considered: between different bit rates (homogenous
transcoding) or between different compression techniques
(heterogenous transcoding). Most of audio compression
techniques uses subbands and/or operate in MDCT domain [1]
and use psychoacoustic models to remove some imperceptible
parts of signal [2].

As a result of such compression, the decoded waveform is
completely different than the original one, which introduces
additional difficulties as two signals have to be compared. Audio
compression with very high compression ratio (very low bitrate)
leads to significant distortion of original signal and lack of data
in most subbands.

There are many audio comparison algorithms that are
commonly used nowadays. The simplest method is to perform
the comparison of audio data sample by sample or to calculate
the cross-correlation between a reference and a compared
sample. The main disadvantage is that even a little difference
between given samples due to the delay, transcoding or volume
change can make those methods completely unreliable.

Some solutions use “acoustic fingerprints” matching to
compare audio data [3]. This comparison algorithm bases on
finding frequencies with the highest amplitude on the generated
spectrogram. Then a sequence of the found “fingerprints” is
compared to a sequence extracted from other audio signal and
algorithm decision is made. This method is used in many sound
recognition applications like Shazzam.

Other approach towards the audio comparison process is to
take human sound perception into account. The compared audio
data is processed by an algorithm that returns perceptual
“signature” of the received data. Such descriptors are compared
in pairs and the result of similarity is given on a percentage
scale[4]. The compatronix sound matching software operates
using this solution.

The main disadvantage of such audio comparison algorithms
is the required length of audio data. To give reliable decision,
the aforementioned algorithms require at least 5 to 10 seconds
of data. In broadcasted streams supervision, such a big delay is

unacceptable. What is more, the algorithms are sensitive to the
degradation of data quality (caused by processing or transcoding
commonly encountered in TV broadcast) lowers the algorithm
reliability. Another drawback is that those solutions do not give
information about mutual delay of compared audio data, what
may be crucial in audio and video synchronization supervising.
Moreover, mentioned algorithms have been designed for offline
usage and are inappropriate for a real-time comparing scenario.

The research towards real-time comparison of audio streams
have been inspired by Telewizja Puls, the third largest
commercial TV network in Poland, provider of two nation-wide
channels: TV Puls and PULS 2, having a reach of 35.5 million
and 29.1 million viewers, respectively (October 2017; 4+).

II. PROPOSED ALGORITHM

The proposed algorithm is based on a simple approach with

cross-correlation calculated between the reference and the

compared audio chunk. Despite sharing common idea with

already mentioned straightforward approach, the algorithm has

been designed to take all broadcast specific requirements into

account.

In order to improve reliability, the comparison between

signals is performed based on signal envelope (as opposed to

raw sample values). Using signal envelope instead of raw

samples gives immunity to signal degradation due to the fact that

shape of the signal envelope is usually well preserved by the

most common processing and encoding operations.

A. Algorithm description

In order to improve reliability, the comparison between
signals is performed based on real envelope of each signal (as
opposed to raw sample values). Using signal envelope instead of
raw samples gives independence from signal degradation due to
the fact that signal envelop is free from sudden signal changes.

The first step of proposed algorithm is the derivation of
signal envelope. To avoid Hilbert transformation calculation,
real signal envelope may be estimated by low pass filtering of
rectified signal and subtracting the mean value of filtered data.
In order to preserve reasonable computational complexity, we
designed a 32-tap FIR low-pass filter with normalized cutoff
frequency equal to 0.25 (Figure 1.). In this step two envelopes
for the reference and the compared chunk are calculated.

 𝐸𝑅(𝑛) = 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑆𝑅(𝑛))

 𝐸𝐶(𝑛) = 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒(𝑆𝐶(𝑛))

Figure 1. Amplitude characteristic of low-pass FIR filter used during
envelope calculation process

Next step is to use previously calculated envelopes to
calculate cross-correlation 𝐶𝐶(𝑛) between the reference and the
compared signal envelopes.

 𝐶𝐶(𝑛) = 𝑥𝑐𝑜𝑟𝑟(𝐸𝑅 , 𝐸𝐶)

In the next step the correlogram 𝐶𝐶(𝑛) resulting from the
previous step enables a decision on audio similarity. In order to
decide whether given audio signals are the same, the algorithm
calculates the correlation peak descriptor, described in details in
the next point. Based on its value, the decision is made. To make
algorithm decision more reliable, the power of signal is
computed prior to any further calculations. If the received power
is too low, further calculations are not performed (decision about
similarity cannot be determined).

Figure 2. Algorithm block diagram.

The described method is flexible, as it allows processing of
audio data fragments with variable number of samples. Data
chunks length may vary, depending on the requirements.
Obviously a low number of samples in chunk results in the
inevitable decrease of the algorithm reliability.

B. Signal similarity or dissimilarity detection

The comparison decision is taken based on signal envelope
cross correlation correlogram 𝐶𝐶(𝑛). If signals contain the same
(or similar) perceivable content, resultant correlogram will have
characteristic shape described as spiky peak – sharply rising to
extreme and suddenly falling. Huge signal similarity will result

in single dominant peak in the whole correlogram. In case of
different audio streams, the shape of cross correlation result, as
well as the number of peaks, will vary and will not have a single
dominant peak (Figure 3. .

In order to decide if audio signals are the same, the algorithm
must check if a single peak has appeared on correlogram and
calculate its descriptor.

For a correlogram with a single peak, the maximum of
correlogram will be much higher than for most of the samples.
The mean value of the correlogram will be relatively small. To
ensure a single narrow peak, the algorithm also calculates the
standard deviation to check dispersion of values which will be
small in case of the dominant peak existence in the correlogram.
Due to the fact that correlogram values may be both positive and
negative, it is possible that the mean value will be zero or very
low. In order to avoid that, all calculation use correlogram’s
absolute values.

Figure 3. Exemplary envelope correlograms for the same (black), same but

compressed (blue) and diferent (red) signals.

In case of a peak in cross correlation result, we expect high
maximum value 𝐶𝐶𝑚𝑎𝑥 , small mean value 𝐶𝐶µ and small

standard deviation 𝐶𝐶σ . Based on that observation, we can
create a correlation peak descriptor 𝐷𝑐 given by the following
formula:

 𝐷𝑐 =
𝐶𝐶𝑚𝑎𝑥

𝐶𝐶µ+𝐶𝐶σ

After calculating descriptor value, the algorithm compares it
with a defined threshold 𝑇𝑐 . If the value is higher than the
threshold, the compared audio data is recognized as the same.

C. Delay calculation

If the audio chunks are found to convey the same content, it
is also desirable to find the delay between the audio streams. Due
to the fact that algorithm uses cross correlation in order to
measure similarity, the correlogram 𝐶𝐶(𝑛) could be used to
estimate sample delay between reference and compared chunk.
If algorithm recognizes the given data to be the same, it is also
possible to calculate the delay between those audio chunks.
Audio streams delay may be calculated by finding the position
of maximum value of cross correlation result. This position

corresponds to the delay represented in audio sample periods. In
order to receive the mutual delay in seconds, the division by data
sample frequency is needed.

D. Power thresholding

In the broadcasted audio stream, the appearance of silent
moments in a content is common, for example during long
pauses in speech. In those moments, an audio signal is mostly
noise. Any transcoding would almost certainly modify this
signal significantly. For processed silence periods with noise,
the correlogram is usually flat, with no dominant peaks. The
algorithm described above may erroneously inform in such a
case that the two streams with silence periods are different. In
order to avoid such situations, the algorithm calculates the power
of the given signals, prior to any other action. If the power of
any of the compared signals is lower than a given threshold, the
silence moment is detected and information about this situation
is returned, determining that no reliable comparison can be
made. Additionally, the information about audio streams power
is very useful in broadcast supervising, for example to inspect
power difference between audio stream channels and to detect
the missing audio content in the encoded audio stream.

III. IMPLEMENTATION

In order to evaluate the performance of the proposed
algorithm, a test implementation has been prepared. As a first
step, a software framework has been developed. The description
of the framework is not in the scope of this paper. It is sufficient
to mention here that the framework was designed as a multi-
format software data receiver with the following functionalities:

 reading audio track from a file,

 reading “Transport Stream over IP” streams,

 receiving and demultiplexing of transmitted streams,

 audio track decoding,

 synchronization of audio frames,

 performing audio stream comparison using the
described algorithm,

 managing all execution threads and used buffers.

The proposed algorithm has been implemented as highly
optimized, multithreaded C++ code. All time consuming
operations related to audio samples processing, like:

 sample format conversion (from native 16 bit signed
integer to normalized single precision floating point),

 calculation of envelope (low-pass filtering, absolute
value calculation),

 calculation of cross-correlation,

 calculation of average value from selected samples,

 calculation of standard deviation,

 searching for maximum value,

have been carefully optimized and implemented in three
different versions:

 portable implementation using plain C++
programming language,

 x86 exclusive, highly optimized implementation using
SIMD instructions from older 128 bit SSE extensions
(SSE, SSE2, SSE3 and SSSE3 extension sets), allowing
to process 4 samples at once,

 x86 exclusive, highly optimized implementation using
256 bit SIMD instructions from modern AVX
extensions (AVX and FMA extension sets), allowing to
process 8 samples at once.

The preferred version could be selected on compile time
according to instruction sets available on target computer.

The calculation of cross-correlation has been implemented
in Discrete Fourier Transform (DFT) domain. The calculation of
forward and inverse transform if performed by Fast Fourier
Transform (FFT) algorithm[5]. The publicly available FFT
implementation called FFTW (“Fastest Fourier Transform in the
West“) [6][7] has been used. In order to speed up calculations,
special version of FFT and iFFT routines optimized for real
signals has been selected. Moreover, calculation of cross-
correlation in DCT domain requires additional calculations like:
multiplication by complex conjugative and fftshift-like
coefficient/samples rearrangement. Both operations have been
implemented in similar manner as sample processing related
operations.

IV. EXPERIMANTAL EVALUATION

Experimental evaluation has been performed by testing the

implemented algorithm using a wide set of different audio

streams. The tests were performed using different digital TV

streams with audio. The evaluation has been divided into two

steps: first concentrated on the algorithm performance and

reliability, the second step was performed to measure the

computational complexity of the implementation.

A. Algorithm reliability

To check algorithm reliability, the set of television audio
streams had been prepared. Recorded audio streams duration
ranged from 4 up to 8 minutes. Prepared data set had different
audio characteristic, for example football match, soap opera,
movie etc. Every audio stream was transcoded using various
coding formats (MPEG-1 Audio Layer 3[8], Ogg Vorbis[9] and
Advanced Audio Coding (AAC)[10]) and bitrates (96, 128, 192
and 320 kbit/s). A single test consisted of the following steps:

 choosing randomly one original audio stream,

 choosing randomly if a second stream content should be
same or different,

 randomly choosing a second stream to compare:
transcoded version of a first stream in case of same
content or not transcoded stream with different content,

 randomly choose the time offset of the stream. Second
stream is additionally delayed by 2205 samples,

 verification of algorithm response.

During experiment, the silence detection (power
thresholding) has not been activated. The chunk size was set to
48384 samples. This size was dictated by an integer number of
transport stream packets that contain around 1 second of the
reconstructed audio (42*1152 samples).

Algorithm decision was checked for various descriptor
thresholds. On (Figure 2.) the percentage of correct algorithm
decisions for 50 000 tests is presented, as a function of the
decision threshold value. The decision threshold is used to
compare it to the descriptor value, as described in chapter II B.

Figure 4. Algorithm correct decision percentage according to decision

threshold (for 50 000 tests, 1 second chunk).

B. Computational complexity

The computational complexity of algorithm implementation
has been measured indirectly by calculating the computation
time. The experiments have been performed in the following
conditions. The system was set to compare two audio tracks with
parameters typical for broadcasting purposes. Each audio track
contained 2 channels (stereo) with 48kHz sampling rate and 16
bits per sample resolution. Experiments have been performed for
a set of different comparison chunk lengths (1, 2, and 4 seconds).
Moreover, each type of implementation (C++, SSE and AVX)
was examined. Tests were performed on typical desktop
computer with modern quad core CPU operating at ~4GHz and
capable of executing AVX instructions (Intel® Skylake
microarchitecture). Test result are summarized in TABLE I.

TABLE I. IMPLEMENTATION PERFORMANCE

Implementation

Calculation time [milliseconds]

48kHz, 16bit, 2 channels (stereo)
1 second

chunk

2 seconds

chunk

4 seconds

chunk

AVX 3.247 7.051 14.190

SSE 3.849 7.701 15.235

C++ 6.788 13.747 27.728

The computation time is strongly correlated with chunk
length. It’s worth noticing that transform (FFT and iFFT)
calculation is significant constituent in computation time,
therefore algorithm computation time resembles the 𝑂(𝑛 ∙
log(𝑛)) complexity relation known for FFT.

The usage of vector instructions allows for significant
reduction in computation time, i.e. AVC implementation is
approximately two times faster than plain C++ code.

The computational complexity evaluation clearly shows that
algorithm has reasonably low computational complexity and
allows for real-time operation. Moreover, the low computational
complexity allows for simultaneous comparison of several
dozen audio pairs on examined computer.

V. CONCLUSIONS

The presented algorithm proves to be an efficient way of
performing the automated supervision of the audio data streams,
especially useful for situations where the same signal is recoded
or transcoded and inserted into different output streams. In such
cases, mistakes in configuration of the process are likely to
happen, and a way of quick automatic verification is a good
method of ensuring the proper assignment of the streams.

The algorithm, especially in its optimized version, is able to
process several different audio streams at the same time in real
time, thus it is able to monitor the assignment of audio streams
for a whole set of different outputs. Even as much as 100
different streams can be compared at once (depending on the
settings of the chunk length and available hardware capabilities)
using a standard desktop personal computer.

Also the problem of noise influence and silence periods in
the signal are handled correctly by the algorithm. Therefore, it is
possible to detect the situations of missing audio. The number of
situations when, due to transcoding of silence periods, the audio
streams could be categorized as different ones, can be
significantly reduced.

ACKNOWLEDGMENT

The presented work has been partially funded by the Polish
Ministry of Science and Higher Education for the status activity
consisting of research and development and associated tasks
supporting development of young scientists and doctoral students in
2018 in Chair of Multimedia Telecommunications and
Microelectronics.

REFERENCES

[1] H. S. Malvar, "Lapped Transforms for Efficient Transform/Subband

Coding", IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.
38, no. 6, pp. 969–978 (Equation 22), June 1990

[2] E. Zwicker and H. Fastl, “Psychoacoustics: Facts and Models”, Springer-
Verlag, Berlin Heidelberg 1990.

[3] A. Wang et al., “An industrial strength audio search algorithm.,” ISMIR,
Washington, DC, 2003, pp. 7–13.

[4] S. V. Rice and S. M. Bailey, "General-Purpose Real-Time Monitoring of
Machine Sounds," in Essential Technologies for Successful Prognostics:
Proceedings of the 59th Meeting of the Society for Machinery Failure
Prevention Technology, Virginia Beach, VA, 2005

[5] W. T. Cochran et al., "What is the fast Fourier transform?," in
Proceedings of the IEEE, vol. 55, no. 10, pp. 1664-1674, Oct. 1967.

[6] M. Frigo and S. G. Johnson, "The Design and Implementation of
FFTW3," Proceedings of the IEEE 93 (2), 216–231 (2005). Invited paper,
Special Issue on Program Generation, Optimization, and Platform
Adaptation.

[7] M. Frigo, "A Fast Fourier Transform Compiler," Proceedings of the 1999
ACM SIGPLAN Conference on Programming Language Design and
Implementation, Atlanta, Georgia, May 1999.

[8] "ISO/IEC 13818-3:1995 – Information technology — Generic coding of
moving pictures and associated audio information — Part 3: Audio". ISO.
1995.

[9] Xiph.Org Foundation, "Vorbis I specification". Xiph.Org Foundation,
February 27, 2015

[10] "ISO/IEC 13818-7:1997, Information technology -- Generic coding of
moving pictures and associated audio information -- Part 7: Advanced
Audio Coding (AAC)

